首頁 資訊 機器學習技術在環(huán)境健康領域中的應用進展

機器學習技術在環(huán)境健康領域中的應用進展

來源:泰然健康網 時間:2024年11月23日 01:29

摘要   隨著環(huán)境和健康研究數(shù)據(jù)共享及可用性的不斷提升,涉及環(huán)境與人體健康的數(shù)據(jù)集數(shù)量急劇增加。然而,這些環(huán)境健康大型數(shù)據(jù)集多樣且復雜,傳統(tǒng)的流行病學和環(huán)境健康模型難以有效分析,因此催生了一個環(huán)境健康研究的新手段。人工智能(AI)技術在環(huán)境健康領域的應用正迅速發(fā)展,為新污染物篩選和毒性預測、生物監(jiān)測、風險評估和健康保護提供了新穎且強大的工具。其中,先進的機器學習(ML)算法能夠揭示人類難以察覺的規(guī)律,在生物標志物識別、疾病預防和環(huán)境工程優(yōu)化等方面表現(xiàn)出重要潛力,為環(huán)境健康研究和技術創(chuàng)新提供新的思路和突破口。然而,ML技術在環(huán)境健康領域的應用仍面臨數(shù)據(jù)質量、模型解釋性以及跨學科合作等挑戰(zhàn)。本文將綜述ML技術在環(huán)境健康領域的最新應用進展,探討其優(yōu)勢、挑戰(zhàn)以及未來的發(fā)展方向,以期為環(huán)境保護和公共健康領域的研究和實踐提供有價值的參考。

Abstract   As the data sharing and availability in environmental and health research continue to improve, the number of large datasets for environmental and human health has increased dramatically. However, these large environmental health datasets are diverse and complex, and traditional epidemiological and environmental health models are difficult to effectively analyze, leading to the development of a new approach to environmental health research. The application of artificial intelligence (AI) technology in environmental health is rapidly developing, providing novel and powerful tools for new pollutant screening and toxicity prediction, biomonitoring, risk assessment, and health protection. Among them, advanced machine learning (ML) algorithms can reveal laws that are difficult for humans to detect, showing important potential in biomarker identification, disease prevention, and environmental engineering optimization. This can provide new ideas and breakthroughs for environmental health research and technological innovation. However, the application of ML technology in the field of environmental health still faces challenges such as data quality, model interpretability, and interdisciplinary cooperation. This paper will review the latest progress in the application of ML technology in the field of environmental health, discuss its advantages, challenges, and future development directions, with the aim of providing valuable references for research and practice in the fields of environmental protection and public health.

[1] 江桂斌, 宋茂勇. 環(huán)境暴露與健康效應[M]. 北京:科學出版社, 2020. [2] 劉靜怡, 孟聰申, 韓京秀. 1990—2019年全球環(huán)境危險因素疾病負擔—GBD2019數(shù)據(jù)再分析[J]. 環(huán)境衛(wèi)生學雜志, 2023, 13(3): 170-176. [3] 支夢雪, 王建設. 暴露組學在識別環(huán)境污染物及其健康危害中的應用進展[J]. 色譜, 2024, 42(2): 142-149. [4] 李立明, 王波, 呂筠, 等. 我國公共衛(wèi)生科技創(chuàng)新的現(xiàn)狀與挑戰(zhàn)[J]. 中國科學基金, 2024, 38(2): 303-307. [5]

HANDELMAN G S, KOK H K, CHANDRA R V, et al. eD octor: machine learning and the future of medicine[J]. Journal of Internal Medicine, 2018, 284(6): 603-619.

[6]

LIU B, DING M, SHAHAM S, et al. When machine learning meets privacy: a survey and outlook[J]. ACM computing surveys, 2022, 54(2): 1-36.

[7]

DONG S, WANG P, ABBAS K. A survey on deep learning and its applications[J]. Computer science review, 2021, 40: 100379.

[8]

ALZUBAIDI L, ZHANG J, HUMAIDI A J, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions[J]. Journal of big data, 2021, 8(1): 53.

[9] 鄭玉新. 暴露評估與暴露組研究——探索環(huán)境與健康的重要基礎[J]. 中華預防醫(yī)學雜志, 2013, 47(2): 99-100. [10] 孟甜, 曹瑩, 劉曉雪, 等. 環(huán)境應急監(jiān)測技術研究進展與展望[J]. 環(huán)境保護, 2023, 14(51): 34-39. [11]

MAGI E, DI CARRO M. Marine environment pollution: The contribution of mass spectrometry to the study of seawater[J].Mass spectrometry reviews,2018, 37(4): 492-512.

[12] 李艷, 吳欣宜, 王全龍, 等. 機器學習輔助光譜分析技術在環(huán)境微/納塑料研究中的應用[J]. 中國無機分析化學, 2024, 14(8): 1137-1146. [13]

ZHAO Q M, YU Y, GAO Y C, et al. Machine learningbased models with high accuracy and broad applicability domains for screening PMT/vPvM substances[J]. Environmental Science & Technology, 2022, 56(24): 17880- 17889.

[14]

SUN X, ZHANG X, MUIR D C G, et al. Identification of potential PBT/POP-like chemicals by a deep learning approach based on 2D structural features[J]. Environmental science & technology, 2020, 54(13): 8221-8231.

[15]

TIAN X, BEéN F, B?UERLEIN P S. Quantum cascade laser imaging (LDIR) and machine learning for the identification of environmentally exposed microplastics and polymers[J]. Environmental research, 2022, 212: 113569.

[16]

LI R Y, YAN C Q, MENG Q P, et al. Key toxic components and sources affecting oxidative potential of atmospheric particulate matter using interpretable machine learning: Insights from fog episodes[J]. Journal of hazardous materials, 2024, 465: 133175.

[17]

DENG F C, QIN G Q, CHEN Y Y, et al. Multi-omics reveals 2-bromo-4,6-dinitroaniline (BDNA)-induced hepatotoxicity and the role of the gut-liver axis in rats[J]. Journal of hazardous materials, 2023, 457: 131760.

[18]

LI Z L, WANG J, YUE H, et al. Applying metabolic modeling and multi-omics to elucidate the biotransformation mechanisms of marine algal toxin domoic acid (DA) in sediments[J]. Journal of hazardous materials, 2024, 472:134541.

[19]

PARK Y J, RAHMAN M S, PANG W K, et al. Systematic multi-omics reveals the overactivation of T cell receptor signaling in immune system following bisphenol A exposure[J]. Environmental pollution, 2022, 308: 119590.

[20]

REEL P S, REEL S, PEARSON E, et al. Using machine learning approaches for multi-omics data analysis: A review[J]. Biotechnology advances, 2021, 49: 107739.

[21]

LI R F, LI L X, XU Y G, et al. Machine learning meets omics: applications and perspectives[J]. Briefings in Bioinformatics, 2022, 23(1): bbab460.

[22]

GUO W J, LIU J, DONG F, et al. Review of machine learning and deep learning models for toxicity prediction [J]. Experimental biology and medicine, 2023: 15353702231209421.

[23]

PENG T, WEI C H, YU F B, et al. Predicting nanotoxicity by an integrated machine learning and metabolomics approach[J]. Environmental pollution, 2020, 267: 115434.

[24]

SU Z K, ZHANG Y L, HONG S Y, et al. Immune regulation patterns in response to environmental pollutant chromate exposure-related genetic damage: a cross-sectional study applying machine learning methods[J]. Environmental science & technology, 2024, 58(17): 7279-7290.

[25]

LUAN H. Machine learning for screening active metabolites with metabolomics in environmental science[J]. Environmental science: advances, 2022, 1(5): 605-611.

[26]

LI L, CHING W K, LIU Z P. Robust biomarker screening from gene expression data by stable machine learningrecursive feature elimination methods[J]. Computational biology and chemistry, 2022, 100: 107747.

[27]

TORUN F M, VIRREIRA WINTER S, DOLL S, et al. Transparent exploration of machine learning for biomarker discovery from proteomics and omics data[J]. Journal of proteome research, 2023, 22(2): 359-367.

[28]

WEI X R, TANG X W, LIU N, et al. PyCoCa: A quantifying tool of carbon content in airway macrophage for assessment the internal dose of particles[J]. Science of the total environment, 2022, 851(Part 1): 158103.

[29] 胡貴平, 陳章健, 唐仕川, 等. 生物監(jiān)測在暴露組評價中的應用[J]. 中華預防醫(yī)學雜志, 2018, 52(2): 945-948. [30]

LIU X, LU D W, ZHANG A Q, et al. Data-driven machine learning in environmental pollution: gains and problems [J]. Environmental science & technology, 2022, 56(4): 2124-2133.

[31] 姚絮. 環(huán)境重金屬聯(lián)合暴露評價及其對重要健康結局的影響[D]. 合肥:安徽醫(yī)科大學, 2023. [32] 張俊鴻, 閆馨, 張俊. 空氣污染與人體健康的關系[J]. 山西醫(yī)藥雜志, 2021, 50(24): 3339-3341. [33]

BOBB J F, VALERI L, CLAUS H B, et al. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures[J]. Biostatistics, 2015, 16(3): 493-508.

[34]

MéNDEZ M,MERAYO M G, Nú?EZ M. Machine learning algorithms to forecast air quality: a survey[J]. Artificial intelligence review, 2023, 56(9): 10031-10066.

[35]

DU S D, LI T R, YANG Y, et al. Deep air quality forecasting using hybrid deep learning framework[J]. IEEE transactions on knowledge and data engineering, 2021, 33(6): 2412-2424.

[36]

MA J, CHENG J C P, LIN C, et al. Improving air quality prediction accuracy at larger temporal resolutions using deep learning and transfer learning techniques[J]. Atmospheric environment, 2019, 214: 116885.

[37] 張宇, 萬爽, 向準, 等. 基于環(huán)境氣象因素的機器學習模型預測呼吸系統(tǒng)疾病急診量[J]. 中國數(shù)字醫(yī)學, 2023, 18(7): 40-45. [38]

KONTOS Y N, KASSANDROS T, PERIFANOS K, et al. Machine learning for groundwater pollution source identification and monitoring network optimization[J]. Neural computing and applications, 2022, 34(22): 19515-19545.

相關知識

FESE ?朱彤院士:中國環(huán)境健康研究展望—論文—科學網
《3—6歲兒童學習與發(fā)展指南》中健康領域的目標解讀
走進健康4.0:醫(yī)療健康領域的數(shù)字化革新之路
深耕健康領域 三星以先進技術開啟智能穿戴健康新時代
用于健康與健身應用的傳感器技術
北京大學公共衛(wèi)生學院成功舉辦“環(huán)境健康與美好生活”學術論壇
熱烈慶祝北京大學“環(huán)境健康系”成立!
尖端技術+臨床實踐=堪培拉大學醫(yī)學健康學院
桂陽縣衛(wèi)生健康局構建醫(yī)療服務領域信用聯(lián)合獎懲機制,優(yōu)化營商環(huán)境
智慧賦能健康 科技引領發(fā)展

網址: 機器學習技術在環(huán)境健康領域中的應用進展 http://www.u1s5d6.cn/newsview30758.html

推薦資訊