首頁 資訊 基于電化學模型的鋰離子電池健康狀態(tài)估算

基于電化學模型的鋰離子電池健康狀態(tài)估算

來源:泰然健康網(wǎng) 時間:2024年12月16日 06:19

摘要: 針對電動汽車鋰離子電池健康狀態(tài)在線估算問題,提出了一種基于偽二維模型參數(shù)的估算方法. 該方法通過拆解同類估算目標電池,以掃描電鏡測量電池結(jié)構(gòu)參數(shù),利用遺傳算法辨識其他未知電化學模型參數(shù),建立一種新的基于化學計量比的電池正極容量計算法則,估算電池健康狀態(tài). 同時考慮老化對電池正極化學計量比的影響,進一步提高健康狀態(tài)估算精度. 采用電池老化數(shù)據(jù)集驗證該方法的有效性,結(jié)果表明所提出的估算方法能在短時動態(tài)工況下實現(xiàn)電池健康狀態(tài)的準確在線估算.

Abstract: To estimate online health state of Li-Ion batteries in electric vehicles accurately, a method was proposed based on the parameters of a pseudo-two-dimensional model. Firstly, disassembling congeneric objective batteries and measuring their structural parameters using scanning electron microscopy, the method was arranged to get some unknown parameters based on genetic algorithm for an electrochemical model. Then, a new stoichiometry ratio-based battery positive capacity calculation was established to estimate the health state of battery. Considering the influence of aging on the stoichiometry ratio in the positive electrode, the estimation accuracy of health state was further improved. Finally, a battery aging dataset was used to verify the validity of the method. The results show that the proposed estimation method can achieve an accurate online estimation of battery health state in short dynamic loading.

圖  1   老化實驗流程

Figure  1.   The flowchart of aging experiment

圖  2   電極材料及局部放大

Figure  2.   Electrode material and partial zoom

圖  3   電池結(jié)構(gòu)厚度測量

Figure  3.   Thickness measurement

圖  4   P2D模型評估

Figure  4.   Evaluation of P2D model

圖  5   不同優(yōu)化方法的辨識精度

Figure  5.   Identification accuracy of different optimization methods

圖  6   老化過程中的正極化學計量比的變化

Figure  6.   The stoichiometric proportion of aging process

表  1   SOH估算誤差

Table  1   Errors of SOH estimation

容量測試序號電池真實容量/Ah修正前誤差/%修正后誤差/%SAM1SAM2SAM1SAM2SAM1SAM2 12.6282.7100.000.000.000.0052.5972.6721.161.461.111.46102.5822.6560.141.59?0.170.61152.4642.600 5.052.892.520.39202.2442.5063.642.841.66?0.17251.9292.4064.402.880.720.54301.9812.941.91MAE2.402.091.030.73RMSE3.152.331.350.97

表  2   SOH估算誤差對比

Table  2   Comparison of errors of SOH estimation

方法索引及方法平均絕對誤差/%平均絕對誤差
的均值/% 模型法文獻[4], 電化學模型1.61, 2.522.07文獻[5], 等效電路模型11數(shù)據(jù)
驅(qū)動法文獻[6], 優(yōu)化擬合模型約1.02, 0.98, 0.59, 0.97,
1.03, 0.82 0.97 ,
0.67 ,1.060.90文獻[8], 神經(jīng)網(wǎng)絡3.52, 3.41, 3.25, 2.793.24文獻[9], 極限學習機1.121.12文獻[10], 高斯過程回歸3.70, 1.00, 0.521.74文中方法1.03, 0.730.88 [1] 陳德海, 華銘, 鄒爭明, 等. 優(yōu)化分級T-S模糊控制動態(tài)估計純電動汽車電池健康狀態(tài)[J]. 北京理工大學學報, 2019, 39(6):609 ? 614.

CHEN Dehai, HUA Ming, ZOU Zhengming, et al. Dynamic prediction of pure electric vehicle battery state of health by optimized and graded t-s fuzzy control[J]. Transactions of Beijing Institute of Technology, 2019, 39(6):609 ? 614. (in Chinese)

[2] 龐曉瓊, 王竹晴, 曾建潮, 等. 基于PCA-NARX的鋰離子電池剩余使用壽命預測[J]. 北京理工大學學報, 2019, 39(4):406 ? 412.

PANG Xiaoqiong, WANG Zhuqing, ZENG Jianchao, et al. Prediction for the remaining useful life of lithium-ion battery based on PCA-NARX[J]. Transactions of Beijing Institute of Technology, 2019, 39(4):406 ? 412. (in Chinese)

[3]

LI J, ADEWUYI K, LOTFI N, et al. A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation[J]. Applied Energy, 2018, 212:1178 ? 1190. doi: 10.1016/j.apenergy.2018.01.011

[4]

XIONG Rui, LI Linlin, LI Zhirun, et al. An electrochemical model based degradation state identification method of Lithium-ion battery for all-climate electric vehicles application[J]. Applied Energy, 2018, 219:264 ? 275. doi: 10.1016/j.apenergy.2018.03.053

[5] 陳猛, 烏江, 焦朝勇, 等. 鋰離子電池健康狀態(tài)多因子在線估計方法[J]. 西安交通大學學報, 2020, 54(1):169 ? 175.

CHEN Meng, WU Jiang, JIAO Chaoyong, et al. Multi-factor online estimation method for health status of lithium-ion battery[J]. Journal of Xi'an Jiaotong University, 2020, 54(1):169 ? 175. (in Chinese)

[6] 南金瑞, 孫路. 基于粒子群算法估計實際工況下鋰電池SOH[J]. 北京理工大學學報, 2021, 41(1):59 ? 64.

NAN Jinrui, SUN Lu. Estimation of lithium battery soh under actual operating conditions based on particle swarm optimization[J]. Transactions of Beijing Institute of Technology, 2021, 41(1):59 ? 64. (in Chinese)

[7]

YANG Duo, ZHANG Xu, PAN Rui, et al. A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve[J]. Journal of Power Sources, 2018, 384:387 ? 395. doi: 10.1016/j.jpowsour.2018.03.015

[8]

ZHANG Shuzhi, ZHAI Baoyu, GUO Xu, et al. Synchronous estimation of state of health and remaining useful lifetime for lithium-ion battery using the incremental capacity and artificial neural networks[J]. Journal of Energy Storage, 2019, 26:100951. doi: 10.1016/j.est.2019.100951

[9]

CHEN Lin, WANG Huimin, LIU Bohao, et al. Battery state-of-health estimation based on a metabolic extreme learning machine combining degradation state model and error compensation[J]. Energy, 2021, 215:119078. doi: 10.1016/j.energy.2020.119078

[10]

ROMAN Darius, SAXENA Saurabh, ROBU Valentin, et al. Machine learning pipeline for battery state-of-health estimation[J]. Nature Machine Intelligence, 2021, 3(5):447 ? 456. doi: 10.1038/s42256-021-00312-3

[11]

KHODADADI Sadabadi Kaveh, JIN Xin, RIZZONI Giorgio. Prediction of remaining useful life for a composite electrode lithium ion battery cell using an electrochemical model to estimate the state of health[J]. Journal of Power Sources, 2021, 481:228861. doi: 10.1016/j.jpowsour.2020.228861

[12]

Lü Zhiqiang, GAO Renjing. A model‐based and data‐driven joint method for state‐of‐health estimation of lithium‐ion battery in electric vehicles[J]. International Journal of Energy Research, 2019, 43:7956 ? 7969.

[13]

XIONG Rui. Battery management algorithm for electric vehicles[M]. Singapore: Springer, 2020.

相關(guān)知識

《電動自行車用鋰離子電池健康評估工作指引》解讀
工信部:擬建立科學、準確、簡便的鋰離子電池健康評估流程和判定規(guī)則
工信部擬進一步加強電動自行車用鋰離子電池健康評估工作
科學制定健康評估工作指引消除電動自行車用鋰離子電池安全隱患
科學制定健康評估工作指引 消除電動自行車用鋰離子電池安全隱患
工信部將公布電動自行車用鋰電池健康評估網(wǎng)點
如何判斷電動自行車用鋰電池是否健康?工信部發(fā)布最新文件
醫(yī)療設備鋰電池解決方案【鉅大鋰電】
健康狀態(tài)評估
電池健康檢測首進社區(qū) 為居民電動自行車深度“體檢”

網(wǎng)址: 基于電化學模型的鋰離子電池健康狀態(tài)估算 http://www.u1s5d6.cn/newsview561911.html

推薦資訊