首頁(yè) 資訊 土壤鎘污染的人體健康風(fēng)險(xiǎn)評(píng)價(jià)研究:生物有效性與毒性效應(yīng)

土壤鎘污染的人體健康風(fēng)險(xiǎn)評(píng)價(jià)研究:生物有效性與毒性效應(yīng)

來(lái)源:泰然健康網(wǎng) 時(shí)間:2024年11月25日 18:46

摘要:鎘(Cd)作為最重要的土壤污染物之一,會(huì)對(duì)人體健康造成嚴(yán)重威脅。Cd污染土壤的健康風(fēng)險(xiǎn)評(píng)估受到廣泛關(guān)注。目前,Cd污染土壤的人體健康風(fēng)險(xiǎn)評(píng)價(jià)多基于總含量,往往高估其健康風(fēng)險(xiǎn)。近年來(lái),以污染物生物有效性作為評(píng)價(jià)基礎(chǔ)的研究受到廣泛認(rèn)可。本文系統(tǒng)分析了體內(nèi)外方法(動(dòng)物模型、體外胃腸模擬方法和腸細(xì)胞模型)測(cè)定Cd生物有效性的優(yōu)缺點(diǎn),綜述了各方法在分析土壤Cd生物有效性的影響因素以及生物有效態(tài)Cd對(duì)動(dòng)物和細(xì)胞模型的毒性效應(yīng);提出弄清土壤總Cd含量-生物有效態(tài)Cd-毒性效應(yīng)之間的劑量效應(yīng)關(guān)系,構(gòu)建基于生物有效性和毒性效應(yīng)為基礎(chǔ)的人體健康風(fēng)險(xiǎn)評(píng)估模型,來(lái)準(zhǔn)確評(píng)估其健康風(fēng)險(xiǎn)的思路,以期為土壤Cd健康風(fēng)險(xiǎn)評(píng)估及有效阻控提供一定參考。

關(guān)鍵詞:鎘 / 土壤 / 生物有效性 / 動(dòng)物模型 / 細(xì)胞模型

Abstract:Cadmium (Cd) is one of the most serious soil contaminants in China, posing an increasing risk to human health as large amounts of Cd are emitted into the environment. Given that, human health risk assessment of Cd-contaminated soil attracts scientific community. Based on literature, most of existing health risk assessment models are dependent on the Cd total content, which may overestimate the risk. Recently, some scientists demonstrated that bioavailable Cd is more accurate to predict its health risk since it reflects actual fraction of human absorption. In recent years, many approaches including in vitro and in vivo models were widely employed to evaluate the potential health risk of Cd in soils. In this review, we summarized the characteristics of existing models (i.e., animal models, in vitro gastrointestinal simulation, and cellular models), analyzed the factors affecting its bioavailability and the toxic effects of bioavailable Cd on animal and cell models. Therefore, we proposed that the scientists should figure out the quantitative relations among the total concentration Cd in soils, bioavailable Cd and induced toxic effects, and then construct the new models based on bioavailability and toxic effects to accurately assess the health risks of soil Cd. Taken together, our review could provide the perspective on the accurate assessment of health risk of heavy metals contaminated soil.

Qin G W, Niu Z D, Yu J D, et al. Soil heavy metal pollution and food safety in China:Effects, sources and removing technology[J]. Chemosphere, 2021, 267:129205Tang X, Li Q, Wu M, et al. Review of remediation practices regarding cadmium-enriched farmland soil with particular reference to China[J]. Journal of Environmental Management, 2016, 181:646-662國(guó)家環(huán)境保護(hù)總局. 土壤環(huán)境質(zhì)量農(nóng)用地土壤污染風(fēng)險(xiǎn)管控標(biāo)準(zhǔn):GB 15618-2018[S]. 北京:中國(guó)環(huán)境科學(xué)出版社, 2018Ruby M V, Lowney Y W. Selective soil particle adherence to hands:Implications for understanding oral exposure to soil contaminants[J]. Environmental Science & Technology, 2012, 46(23):12759-12771Wang K, Ma J Y, Li M Y, et al. Mechanisms of Cd and Cu induced toxicity in human gastric epithelial cells:Oxidative stress, cell cycle arrest and apoptosis[J]. Science of the Total Environment, 2021, 756:143951Cao P Q, Fujimori T, Juhasz A, et al. Bioaccessibility and human health risk assessment of metal(loid)s in soil from an e-waste open burning site in Agbogbloshie, Accra, Ghana[J]. Chemosphere, 2020, 240:124909Han Y, Tang Z W, Sun J Z, et al. Heavy metals in soil contaminated through e-waste processing activities in a recycling area:Implications for risk management[J]. Process Safety and Environmental Protection, 2019, 125:189-196馬嬌陽(yáng), 田穩(wěn), 王坤, 等. 污染場(chǎng)地土壤重金屬的生物可給性及毒性研究[J]. 中國(guó)環(huán)境科學(xué), 2021, 41(10):4885-4893

Ma J Y, Tian W, Wang K, et al. Bioaccessibility and their toxic effects of heavy metal in field soils from an electronic disassembly plant[J]. China Environmental Science, 2021, 41(10):4885-4893(in Chinese)

Li H B, Li J, Li S W, et al. Application of Oral Bioavailability to Remediation of Contaminated Soils:Method Development for Bioaccessible As, Pb, and Cd[M]//Twenty Years of Research and Development on Soil Pollution and Remediation in China. Singapore:Springer Singapore, 2018:189-216Li S W, Sun H J, Li H B, et al. Assessment of cadmium bioaccessibility to predict its bioavailability in contaminated soils[J]. Environment International, 2016, 94:600-606Kang Y, Pan W J, Liang S Y, et al. Assessment of relative bioavailability of heavy metals in soil using in vivo mouse model and its implication for risk assessment compared with bioaccessibility using in vitro assay[J]. Environmental Geochemistry and Health, 2016, 38(5):1183-1191唐文忠, 孫柳, 單保慶. 土壤/沉積物中重金屬生物有效性和生物可利用性的研究進(jìn)展[J]. 環(huán)境工程學(xué)報(bào), 2019, 13(8):1775-1790

Tang W Z, Sun L, Shan B Q. Research progress of bioavailability and bioaccessibility of heavy metals in soil or sediment[J]. Chinese Journal of Environmental Engineering, 2019, 13(8):1775-1790(in Chinese)

Ng J C, Juhasz A, Smith E, et al. Assessing the bioavailability and bioaccessibility of metals and metalloids[J]. Environmental Science and Pollution Research, 2015, 22(12):8802-8825Wragg J, Cave M, Basta N, et al. An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil[J]. Science of the Total Environment, 2011, 409(19):4016-4030Li H B, Li M Y, Zhao D, et al. Arsenic, lead, and cadmium bioaccessibility in contaminated soils:Measurements and validations[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(13):1303-1338Zia M H, Codling E E, Scheckel K G, et al. In vitro and in vivo approaches for the measurement of oral bioavailability of lead (Pb) in contaminated soils:A review[J]. Environmental Pollution, 2011, 159(10):2320-2327Fu J, Cui Y S. In vitro digestion/Caco-2 cell model to estimate cadmium and lead bioaccessibility/bioavailability in two vegetables:The influence of cooking and additives[J]. Food and Chemical Toxicology, 2013, 59:215-221Aziz R, Rafiq M T, Li T Q, et al. Uptake of cadmium by rice grown on contaminated soils and its bioavailability/toxicity in human cell lines (Caco-2/HL-7702)[J]. Journal of Agricultural and Food Chemistry, 2015, 63(13):3599-3608Akkajit P, Tongcumpou C. Fractionation of metals in cadmium contaminated soil:Relation and effect on bioavailable cadmium[J]. Geoderma, 2010, 156(3-4):126-132Zhang R R, Zhang Q, Ma L Q, et al. Effects of food constituents on absorption and bioaccessibility of dietary synthetic phenolic antioxidant by Caco-2 cells[J]. Journal of Agricultural and Food Chemistry, 2020, 68(16):4670-4677王維薇, 林清. 國(guó)內(nèi)外土壤鎘污染及其修復(fù)技術(shù)的現(xiàn)狀與展望[J]. 綠色科技, 2017(4):90-93, 102

Wang W W, Lin Q. Present situation and prospect of soil cadmium pollution and remediation technology at home and abroad[J]. Journal of Green Science and Technology, 2017(4):90-93, 102(in Chinese)

陳雅麗, 翁莉萍, 馬杰, 等. 近十年中國(guó)土壤重金屬污染源解析研究進(jìn)展[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2019, 38(10):2219-2238

Chen Y L, Weng L P, Ma J, et al. Review on the last ten years of research on source identification of heavy metal pollution in soils[J]. Journal of Agro-Environment Science, 2019, 38(10):2219-2238(in Chinese)

Duan Q N, Lee J, Liu Y S, et al. Distribution of heavy metal pollution in surface soil samples in China:A graphical review[J]. Bulletin of Environmental Contamination and Toxicology, 2016, 97(3):303-309United States Environmental Protection Agency (US EPA). EPA/600/R-09/052F Exposure Factors Handbook (Final Edition)[S]. Washington DC:US EPA, 2011中華人民共和國(guó)環(huán)境保護(hù)部. 中國(guó)人群暴露參數(shù)手冊(cè)(成人卷)[M]. 北京:中國(guó)環(huán)境科學(xué)出版社, 2013:664-669 Ministry of Environmental Protection of the People's Republic of China. Exposure Factors Handbook of Chinese Population[M]. Beijing:China Environmental Science Press, 2013:664

-669(in Chinese)

國(guó)家環(huán)境保護(hù)總局. 污染場(chǎng)地風(fēng)險(xiǎn)評(píng)估技術(shù)導(dǎo)則:HJ 25.3-2014[S]. 北京:中國(guó)環(huán)境科學(xué)出版社, 2014李夢(mèng)瑩, 王成塵, 畢玨, 等. 食品中重金屬的人體健康風(fēng)險(xiǎn)評(píng)估方法研究進(jìn)展[J]. 福建農(nóng)林大學(xué)學(xué)報(bào):自然科學(xué)版, 2021, 50(1):1-9

Li M Y, Wang C C, Bi J, et al. Human health risk assessment of heavy metals in food:A review[J]. Journal of Fujian Agriculture and Forestry University:Natural Science Edition, 2021, 50(1):1-9(in Chinese)

Zhu X, Li M Y, Chen X Q, et al. As, Cd, and Pb relative bioavailability in contaminated soils:Coupling mouse bioassay with UBM assay[J]. Environment International, 2019, 130:104875Li H B, Li M Y, Zhao D, et al. Oral bioavailability of As, Pb, and Cd in contaminated soils, dust, and foods based on animal bioassays:A review[J]. Environmental Science & Technology, 2019, 53(18):10545-10559Bradham K D, Diamond G L, Burgess M, et al. In vivo and in vitro methods for evaluating soil arsenic bioavailability:Relevant to human health risk assessment[J]. Journal of Toxicology and Environmental Health Part B, Critical Reviews, 2018, 21(2):83-114Denys S, Caboche J, Tack K, et al. In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils[J]. Environmental Science & Technology, 2012, 46(11):6252-6260Schroder J L, Basta N T, Si J T, et al. In vitro gastrointestinal method to estimate relative bioavailable cadmium in contaminated soil[J]. Environmental Science & Technology, 2003, 37(7):1365-1370Hugenholtz F, Vos W M. Mouse models for human intestinal microbiota research:A critical evaluation[J]. Cellular and Molecular Life Sciences, 2018, 75(1):149-160Roberts S M, Munson J W, Lowney Y W, et al. Relative oral bioavailability of arsenic from contaminated soils measured in the cynomolgus monkey[J]. Toxicological Sciences, 2007, 95(1):281-288Yan K H, Dong Z M, Wijayawardena M A A, et al. Measurement of soil lead bioavailability and influence of soil types and properties:A review[J]. Chemosphere, 2017, 184:27-42Juhasz A L, Weber J, Naidu R, et al. Determination of cadmium relative bioavailability in contaminated soils and its prediction using in vitro methodologies[J]. Environmental Science & Technology, 2010, 44(13):5240-5247Li H B, Chen X Q, Wang J Y, et al. Antagonistic interactions between arsenic, lead, and cadmium in the mouse gastrointestinal tract and their influences on metal relative bioavailability in contaminated soils[J]. Environmental Science & Technology, 2019, 53(24):14264-14272Sarkar A, Ravindran G. A brief review on the effect of cadmium toxicity:From cellular to organ level[J]. International Journal of Bio-Technology and Research, 2013, 3(1):17-36Ruby M V, Davis A, Schoof R, et al. Estimation of lead and arsenic bioavailability using a physiologically based extraction test[J]. Environmental Science & Technology, 1996, 30(2):422-430Deutsches Institut für Normung e.V. (DIN). DIN 19738, Soil Quality-Bioaccessibility of Organic and Inorganic Pollutants from Contaminated Soil Material[S]. Berlin:DIN, 2017Han Q, Wang M S, Cao J L, et al. Health risk assessment and bioaccessibilities of heavy metals for children in soil and dust from urban parks and schools of Jiaozuo, China[J]. Ecotoxicology and Environmental Safety, 2020, 191:110157Schroder J L, Basta N T, Casteel S W, et al. Validation of the in vitro gastrointestinal (IVG) method to estimate relative bioavailable lead in contaminated soils[J]. Journal of Environmental Quality, 2004, 33(2):513-521Cui X Y, Xiang P, He R W, et al. Advances in in vitro methods to evaluate oral bioaccessibility of PAHs and PBDEs in environmental matrices[J]. Chemosphere, 2016, 150:378-389Calatayud M, Vázquez M, Devesa V, et al. In vitro study of intestinal transport of inorganic and methylated arsenic species by Caco-2/HT29-MTX cocultures[J]. Chemical Research in Toxicology, 2012, 25(12):2654-2662Aziz R, Rafiq M T, Yang J, et al. Impact assessment of cadmium toxicity and its bioavailability in human cell lines (Caco-2 and HL-7702)[J]. BioMed Research International, 2014, 2014:839538王振洲, 崔巖山, 張震南, 等. Caco-2細(xì)胞模型評(píng)估金屬人體生物有效性的研究進(jìn)展[J]. 生態(tài)毒理學(xué)報(bào), 2014, 9(6):1027-1034

Wang Z Z, Cui Y S, Zhang Z N, et al. Evaluation on the human bioavailability of metals using Caco-2 cell model:A review[J]. Asian Journal of Ecotoxicology, 2014, 9(6):1027-1034(in Chinese)

Boim A G F, Wragg J, Canniatti-Brazaca S G, et al. Human intestinal Caco-2 cell line in vitro assay to evaluate the absorption of Cd, Cu, Mn and Zn from urban environmental matrices[J]. Environmental Geochemistry and Health, 2020, 42(2):601-615Pan W J, Kang Y, Zeng L X, et al. Comparison of in vitro digestion model with in vivo relative bioavailability of BDE-209 in indoor dust and combination of in vitro digestion/Caco-2 cell model to estimate the daily intake of BDE-209 via indoor dust[J]. Environmental Pollution, 2016, 218:497-504Leonard F, Collnot E M, Lehr C M. A three-dimensional coculture of enterocytes, monocytes and dendritic cells to model inflamed intestinal mucosa in vitro[J]. Molecular Pharmaceutics, 2010, 7(6):2103-2119Mahler G J, Esch M B, Tako E, et al. Oral exposure to polystyrene nanoparticles affects iron absorption[J]. Nature Nanotechnology, 2012, 7(4):264-271Lv Q, He Q, Wu Y, et al. Investigating the bioaccessibility and bioavailability of cadmium in a cooked rice food matrix by using an 11-day rapid Caco-2/HT-29 co-culture cell model combined with an in vitro digestion model[J]. Biological Trace Element Research, 2019, 190(2):336-348Aziz R, Rafiq M T, He Z L, et al. In vitro assessment of cadmium bioavailability in Chinese cabbage grown on different soils and its toxic effects on human health[J]. BioMed Research International, 2015, 2015:285351Breton J, Clère K, Daniel C, et al. Chronic ingestion of cadmium and lead alters the bioavailability of essential and heavy metals, gene expression pathways and genotoxicity in mouse intestine[J]. Archives of Toxicology, 2013, 87(10):1787-1795He X W, Qi Z D, Hou H, et al. Structural and functional alterations of gut microbiome in mice induced by chronic cadmium exposure[J]. Chemosphere, 2020, 246:125747Bashir M, Meddings J, Alshaikh A, et al. Enhanced gastrointestinal passive paracellular permeability contributes to the obesity-associated hyperoxaluria[J]. American Journal of Physiology Gastrointestinal and Liver Physiology, 2019, 316(1):G1-G14Ba Q, Li M, Chen P Z, et al. Sex-dependent effects of cadmium exposure in early life on gut microbiota and fat accumulation in mice[J]. Environmental Health Perspectives, 2017, 125(3):437-446Li X S, Li H W, Cai D B, et al. Chronic oral exposure to cadmium causes liver inflammation by NLRP3 inflammasome activation in pubertal mice[J]. Food and Chemical Toxicology, 2021, 148:111944王漫莉, 羅啟仕, 冉雨靈, 等. 受污染土壤中重金屬的蚯蚓生物有效性評(píng)估研究進(jìn)展[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào), 2019, 35(9):1097-1102

Wang M L, Luo Q S, Ran Y L, et al. Research advances in the assessment of heavy metal bioavailability to earthworms in contaminated soils[J]. Journal of Ecology and Rural Environment, 2019, 35(9):1097-1102(in Chinese)

楊潔, 瞿攀, 王金生, 等. 土壤中重金屬的生物有效性分析方法及其影響因素綜述[J]. 環(huán)境污染與防治, 2017, 39(2):217-223

Yang J, Qu P, Wang J S, et al. Review on analysis methods of bioavailability of heavy metals in soil and its influence factors[J]. Environmental Pollution & Control, 2017, 39(2):217-223(in Chinese)

Shahid M, Dumat C, Khalid S, et al. Cadmium Bioavailability, Uptake, Toxicity and Detoxification in Soil-Plant System[M]. New York:Springer, 2016:73-137毛凌晨, 葉華. 氧化還原電位對(duì)土壤中重金屬環(huán)境行為的影響研究進(jìn)展[J]. 環(huán)境科學(xué)研究, 2018, 31(10):1669-1676

Mao L C, Ye H. Influence of redox potential on heavy metal behavior in soils:A review[J]. Research of Environmental Sciences, 2018, 31(10):1669-1676(in Chinese)

Tian H Q, Wang Y Z, Xie J F, et al. Effects of soil properties and land use types on the bioaccessibility of Cd, Pb, Cr, and Cu in Dongguan City, China[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(1):64-70Ollson C J, Smith E, Herde P, et al. Influence of sample matrix on the bioavailability of arsenic, cadmium and lead during co-contaminant exposure[J]. Science of the Total Environment, 2017, 595:660-665Ollson C J, Smith E, Herde P, et al. Influence of co-contaminant exposure on the absorption of arsenic, cadmium and lead[J]. Chemosphere, 2017, 168:658-666Zou R, Wang L, Li Y C, et al. Cadmium absorption and translocation of amaranth (Amaranthus mangostanus L.) affected by iron deficiency[J]. Environmental Pollution, 2020, 256:113410Hamel S C, Buckley B, Lioy P J. Bioaccessibility of metals in soils for different liquid to solid ratios in synthetic gastric fluid[J]. Environmental Science & Technology, 1998, 32(3):358-362Lu M J, Li G Y, Yang Y, et al. A review on in-vitro oral bioaccessibility of organic pollutants and its application in human exposure assessment[J]. Science of the Total Environment, 2021, 752:142001Oomen A G, Rompelberg C J M, Kamp E V D, et al. Effect of bile type on the bioaccessibility of soil contaminants in an in vitro digestion model[J]. Archives of Environmental Contamination and Toxicology, 2004, 46(2):183-188Sun D X, Lennernas H, Welage L S, et al. Comparison of human duodenum and Caco-2 gene expression profiles for 12, 000 gene sequences tags and correlation with permeability of 26 drugs[J]. Pharmaceutical Research, 2002, 19(10):1400-1416Balimane P V, Chong S. Cell culture-based models for intestinal permeability:A critique[J]. Drug Discovery Today, 2005, 10(5):335-343Sun S, Zhou X F, Li Y W, et al. Use of dietary components to reduce the bioaccessibility and bioavailability of cadmium in rice[J]. Journal of Agricultural and Food Chemistry, 2020, 68(14):4166-4175

相關(guān)知識(shí)

環(huán)境污染與健康風(fēng)險(xiǎn)的評(píng)估.pptx
加強(qiáng)新污染物治理有效防范環(huán)境與健康風(fēng)險(xiǎn)
環(huán)境污染物聯(lián)合暴露的人體健康累積風(fēng)險(xiǎn)評(píng)估研究進(jìn)展
環(huán)境污染與健康研究所
新污染物與健康研究組
環(huán)境污染與先天性心臟病的研究進(jìn)展
生殖健康與環(huán)境污染的關(guān)系
環(huán)境污染與人類健康的關(guān)系
PM2.5污染與低出生體重發(fā)生風(fēng)險(xiǎn)關(guān)聯(lián)的研究進(jìn)展
環(huán)境重金屬污染健康監(jiān)測(cè)技術(shù)指南專業(yè)交流論壇

網(wǎng)址: 土壤鎘污染的人體健康風(fēng)險(xiǎn)評(píng)價(jià)研究:生物有效性與毒性效應(yīng) http://www.u1s5d6.cn/newsview88591.html

推薦資訊