首頁(yè) 資訊 人工智能在動(dòng)力電池健康狀態(tài)預(yù)估中的研究綜述

人工智能在動(dòng)力電池健康狀態(tài)預(yù)估中的研究綜述

來(lái)源:泰然健康網(wǎng) 時(shí)間:2025年05月20日 19:17

摘要: 目前先進(jìn)的電動(dòng)汽車開(kāi)發(fā)和應(yīng)用已成為實(shí)現(xiàn)“脫碳”的關(guān)鍵技術(shù)。準(zhǔn)確的電池健康狀態(tài)(State of health,SOH)預(yù)估可有效地表征動(dòng)力電池性能,對(duì)電動(dòng)汽車動(dòng)力電池維護(hù)和壽命管理具有重要意義。近年來(lái),以深度學(xué)習(xí)、強(qiáng)化學(xué)習(xí)和大數(shù)據(jù)技術(shù)等為代表的新一代人工智能技術(shù)在電動(dòng)汽車電池狀態(tài)預(yù)估的應(yīng)用已成為研究熱點(diǎn)。首先簡(jiǎn)要介紹人工智能技術(shù)、SOH的含義以及影響SOH主要因素,然后分別從電池單體與電池系統(tǒng)的角度對(duì)幾種人工智能模型在SOH預(yù)估中的研究進(jìn)行總結(jié)與討論,最后結(jié)合大數(shù)據(jù)、云計(jì)算、區(qū)域鏈等新興技術(shù),對(duì)電池健康狀態(tài)預(yù)估問(wèn)題進(jìn)行展望,為提升當(dāng)前動(dòng)力電池全生命周期管理能力提供一些思路。

關(guān)鍵詞: 人工智能, 健康狀態(tài), 電池系統(tǒng), 現(xiàn)狀與趨勢(shì)

Abstract: The development and application of advanced electric vehicles has become the key technology to achieve “decarbonization”. Accurate state of health(SOH) prediction of battery can effectively characterize its operation performance. It is of great significance to the maintenance and life management of battery in electric vehicle. In recent years, a new generation of artificial intelligence technology represented by deep learning, reinforcement learning and big data technology has become a research hotspot in the application of battery state prediction. The basic theory of artificial intelligence technology and SOH and SOH influence factors is briefly introduced. Several main artificial intelligence algorithms in SOH prediction are summarized and discussed from the perspective of battery cell and battery system respectively. Finally, combined with emerging technologies such as big data, cloud computing and regional chain, some battery SOH prediction problems are discussed, which provides some ideas for breaking through the bottleneck of current power battery full life cycle management technology.

Key words: artificial intelligence, state of health, battery system, status and trend

中圖分類號(hào): 

TM912

相關(guān)知識(shí)

學(xué)院在動(dòng)力電池健康狀態(tài)估計(jì)研究領(lǐng)域取得新進(jìn)展
動(dòng)態(tài)工況下鋰離子動(dòng)力電池荷電狀態(tài)估計(jì)和健康狀態(tài)預(yù)測(cè)
電動(dòng)汽車鋰離子動(dòng)力電池健康狀態(tài)估計(jì)方法研究.pdf
車用鋰電池健康狀態(tài)下快充方法研究綜述
鋰離子電池安全狀態(tài)評(píng)估研究進(jìn)展
智能電池健康度評(píng)估
基于動(dòng)態(tài)工況模型誤差特征的動(dòng)力電池健康狀態(tài)估計(jì)方法
基于數(shù)據(jù)驅(qū)動(dòng)的電動(dòng)汽車電池健康狀態(tài)估計(jì)研究
電動(dòng)汽車動(dòng)力電池健康狀態(tài)評(píng)估方法與流程
電動(dòng)汽車鋰離子電池健康狀態(tài)估計(jì)及容量衰退預(yù)測(cè)

網(wǎng)址: 人工智能在動(dòng)力電池健康狀態(tài)預(yù)估中的研究綜述 http://www.u1s5d6.cn/newsview1294317.html

推薦資訊