首頁 資訊 基于實(shí)車數(shù)據(jù)和BP

基于實(shí)車數(shù)據(jù)和BP

來源:泰然健康網(wǎng) 時間:2024年12月16日 06:20

基于實(shí)車數(shù)據(jù)和BP-AdaBoost算法的電動汽車動力電池健康狀態(tài)估計(jì)

基金項(xiàng)目:

國家自然科學(xué)(51465100);廣西自然科學(xué)(2018GXNSFAA281282);廣西自動檢測技術(shù)與儀器重點(diǎn)實(shí)驗(yàn)室主任(YQ17110);桂林電子科技大學(xué)研究生教育創(chuàng)新計(jì)劃資助項(xiàng)目(2021YCXS120)

Electric vehicle power battery SOH estimation based on real vehicle data and BP-Adaboost algorithm

摘要 | | 訪問統(tǒng)計(jì) | | | || 文章評論

摘要:

動力電池健康狀態(tài)(State of Health, SOH)估計(jì)是電動汽車領(lǐng)域關(guān)注的一個熱點(diǎn),目前的大部分方法都是基于實(shí)驗(yàn)室測試數(shù)據(jù)進(jìn)行估計(jì),忽略了實(shí)際車輛運(yùn)行情況。本文使用國家大數(shù)據(jù)聯(lián)盟平臺采集的實(shí)際車輛運(yùn)行數(shù)據(jù)進(jìn)行電池SOH的估計(jì)。數(shù)據(jù)預(yù)處理方面,在清洗異常數(shù)據(jù)時,保留了實(shí)車數(shù)據(jù)中合理的強(qiáng)噪聲數(shù)據(jù),保證了數(shù)據(jù)的真實(shí)性。特征選擇方面,選擇容量增量曲線峰值和對應(yīng)的電壓以及基于安時積分得到的小片段充電容量數(shù)據(jù)。算法方面,針對真實(shí)數(shù)據(jù)的弱時序性問題,利用BP-Adaboost算法進(jìn)行電池SOH估計(jì)的研究。最后,利用同一類型三輛車的數(shù)據(jù)進(jìn)行了模型訓(xùn)練、測試和驗(yàn)證,預(yù)測結(jié)果與LSTM-RNN算法對比,BP-Adaboost算法估計(jì)誤差更小,平均絕對誤差MAE達(dá)到0.96%,因此,本文提出的方法可以應(yīng)用于實(shí)車電池SOH的高精度估計(jì)。

Abstract:

State of Health (SOH) estimation is a hot topic in the field of electric vehicles. Most of the current methods are based on test data in the laboratory, so the actual vehicle operations are ignored. In this paper, the real vehicle operation data from the National Big Data Alliance platform was used to estimate SOH. In terms of data preprocessing, reasonable strong noise data in real vehicle data are retained to ensure the authenticity of data when rinsing abnormal data. In terms of feature selection, the peak value of capacity increment curve and corresponding voltage are selected as well as the small segment charging capacity data obtained based on ampere-hour integration. In terms of algorithm, BP-Adaboost algorithm is used to estimate SOH of battery for the weak timing of real data. Finally, the model is trained, tested and verified by using the data of three vehicles of the same type. Compared with LSTM-RNN algorithm, the estimation error of BP-Adaboost algorithm is smaller, and MAE can reach 0.96%. Therefore, the proposed method can be applied to high-precision SOH estimation of real vehicle batteries.

引用本文

周仁,張向文. 基于實(shí)車數(shù)據(jù)和BP-AdaBoost算法的電動汽車動力電池健康狀態(tài)估計(jì)[J]. 科學(xué)技術(shù)與工程, 2022, 22(21): 9398-9406.
Zhou Ren, Zhang Xiangwen. Electric vehicle power battery SOH estimation based on real vehicle data and BP-Adaboost algorithm[J]. Science Technology and Engineering,2022,22(21):9398-9406.

復(fù)制

分享 文章指標(biāo) 點(diǎn)擊次數(shù):231 下載次數(shù): 929 HTML閱讀次數(shù): 0 歷史 收稿日期:2021-12-28 最后修改日期:2022-02-20 錄用日期:2022-02-24 在線發(fā)布日期: 2022-08-09

相關(guān)知識

一種基于聲音特征識別的嬰兒哭聲翻譯方法與流程
基于健康數(shù)據(jù)采集的健康大數(shù)據(jù)分析.pptx
運(yùn)動健康數(shù)據(jù)可視化:基于 Echarts 和 Java SpringBoot 的動態(tài)實(shí)時大屏范例
一種老人健康數(shù)據(jù)監(jiān)控分析方法及系統(tǒng)與流程
基于大數(shù)據(jù)平臺的醫(yī)療健康數(shù)據(jù)分析與應(yīng)用模式研究
基于云計(jì)算的健康醫(yī)療大數(shù)據(jù)平臺
基于大數(shù)據(jù)的區(qū)醫(yī)療云解決方案.doc
5大醫(yī)療保健數(shù)據(jù)安全挑戰(zhàn)和數(shù)據(jù)保護(hù)技巧
基于運(yùn)動健康管理模式的VR單車智能健身系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)
來自韓國不良事件報告系統(tǒng)數(shù)據(jù)庫的基于真實(shí)世界數(shù)據(jù)的藥物不良反應(yīng)檢測,采用基于電子健康記錄的檢測算法,Health Informatics Journal

網(wǎng)址: 基于實(shí)車數(shù)據(jù)和BP http://www.u1s5d6.cn/newsview561918.html

推薦資訊