Research Progress of Probiotics, Prebiotics, Synbiotics and Intestinal Health in Canine and Feline
引用本文
毛愛鵬, 孫皓然, 張海華, 徐超. 益生菌、益生元、合生元與犬貓腸道健康的研究進展[J]. 動物營養(yǎng)學報, 2022, 34(4): 2140-2147.
MAO Aipeng, SUN Haoran, ZHANG Haihua, XU Chao. Research Progress of Probiotics, Prebiotics, Synbiotics and Intestinal Health in Canine and Feline[J]. Chinese Journal of Animal Nutrition, 2022, 34(4): 2140-2147.
益生菌、益生元、合生元與犬貓腸道健康的研究進展
毛愛鵬1,2 , 孫皓然1 , 張海華2 , 徐超1
1. 中國農業(yè)科學院特產研究所, 長春 130112;
2. 河北科技師范學院動物科技學院, 河北省特色動物種質資源挖掘與創(chuàng)新重點實驗室, 秦皇島 066004
收稿日期: 2021-09-11
基金項目: 中央級公益性科研院所基本科研業(yè)務費專項(1610342021006);中國農業(yè)科學院科技創(chuàng)新工程; 河北省青年拔尖人才項目(180443)
作者簡介: 毛愛鵬(1996—), 男, 甘肅定西人, 碩士研究生, 從事特種動物飼養(yǎng)研究。E-mail: 443418199@qq.com.
摘要: 益生菌、益生元作為寵物食品添加劑, 可調節(jié)腸道菌群結構及相關代謝產物而有益于宿主健康。本文對益生菌、益生元等在寵物食品中的應用進行綜述, 并探討益生菌、益生元、合生元在寵物營養(yǎng)中的作用, 以期為提高犬貓腸道健康及寵物食品合理配制提供參考。
關鍵詞: 益生菌 益生元 合生元 寵物食品 腸道菌群
Research Progress of Probiotics, Prebiotics, Synbiotics and Intestinal Health in Canine and Feline
MAO Aipeng1,2 , SUN Haoran1 , ZHANG Haihua2 , XU Chao1
1. Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China;
2. Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
Corresponding author: XU Chao, associate professor, E-mail: xuchao@caas.cn.
Abstract: As pet food additives, probiotics and prebiotics can regulate the structure of gut microbiota and related metabolites, which are beneficial to the health of the host. In this review, we summarize the application of probiotics, prebiotics and other substances in canine and feline, and discuss the role of probiotics and prebiotics in pet nutrition, in order to provide reference for improving intestinal health of canine and feline and the rational preparation of pet food.
Key words: probiotics prebiotics synbiotics pet food gut microbiota
犬貓是人類生活中最常見的伴侶動物,隨著科學養(yǎng)寵理念的逐步建立,寵物營養(yǎng)與健康越來越引起人們的關注。將益生菌、益生元等物質添加到寵物食品中形成功能性寵物食品,可改變犬貓胃腸道健康,促進生理生化指標改變,改善神經系統(tǒng)機能,降低特殊疾病發(fā)展的風險。如果作為多樣化飲食組成定期食用,不僅可維持動物基本營養(yǎng)需求,而且在預防特定疾病發(fā)生,增強特定生理機能方面發(fā)揮重要作用[1-2]。
腸道不僅是營養(yǎng)物質消化吸收的器官,而且作為機體重要的免疫屏障,決定著寵物的整體健康狀況。寵物腸道健康不僅體現為其結構與功能的完整,還表現為腸道微生態(tài)環(huán)境的穩(wěn)定[3]。動物攝入的養(yǎng)分只有同時滿足自身細胞與微生物的共同需要,才能使機體處于真正健康的狀態(tài)[4]。在營養(yǎng)水平一致的情況下,不同來源、結構和組成的營養(yǎng)物質對腸道微生物的影響可能存在極大差異,而微生物水平的變化最終會影響動物整體的健康狀況。
1 腸道微生物對犬貓的作用
在動物體表或體內生存的大量微生物與動物機體自身細胞形成有機統(tǒng)一,并對宿主適應性有著深遠影響[5-7]。胃腸道是微生物(包括細菌、真菌、病毒和原生動物等)生存的主要場所,在動物胃腸道中有1010~1014個微生物,大約是宿主所有細胞數量的10倍,且腸道微生物編碼基因總數比宿主自身細胞編碼基因總數多出100倍,被認為是機體第二基因組[8-9]。胃腸道微生態(tài)復雜的動態(tài)平衡在宿主整個生命周期中不斷發(fā)展,動物飲食偏好、年齡、生活方式和遺傳背景等均會影響腸道微生物的組成;另外,腸道中的微生物群又反過來影響宿主吸收的營養(yǎng)物質、生理代謝等,并通過介導免疫反應促進機體健康[10-11]。
應用宏基因組學方法來表征犬胃腸道微生物群,表明犬腸道菌群的優(yōu)勢菌門與人類和嚙齒動物模型相似,古生菌、真菌和病毒僅占所有序列的一小部分,其存在水平與其他哺乳動物一致[12]。犬貓腸道中的微生物均以厚壁菌門最為豐富,其次犬為擬桿菌門,貓為放線菌門較為豐富,子囊菌門是貓體內唯一發(fā)現的真菌門,在犬中還包括擔子菌門、球囊菌門和接合菌門[13]。健康犬和急性腹瀉犬的糞便樣本中存在各種真菌屬,它們在胃腸道健康和疾病中的作用機理尚不確定[14]。與腹瀉犬相比,健康犬糞便中擬桿菌門比例明顯偏高[15]。腹瀉犬糞便中有益菌如乳酸桿菌、雙歧桿菌和腸球菌數量降低,而腸桿菌等致病菌數量有增加的趨勢[16]。研究表明,每種動物都有獨特的微生物特征,且隨年齡的增長不斷變化[17-18];不同品種犬貓之間糞便微生物菌群也存在差異[19];微生物組成在不同腸道生態(tài)位之間也不同,且微生物數量和多樣性隨腸道的延伸而增加[20]。腸道內微生物大部分與機體細胞密切接觸,相互傳遞信息并交換能量物質,不僅影響營養(yǎng)物質的消化吸收,還直接或間接調控宿主多項生理功能。
腸炎患者糞便中含有更高水平的3-羥基硫酸鹽膽汁酸,次級膽汁酸的硫酸化可消除其抗炎特性[21]。腸道中的微生物能將進入結腸的初級膽汁酸轉化為次級膽汁酸,初級膽汁酸與次級膽汁酸通過激活胰高血糖素樣肽-1(glucagon-like peptide-1,GLP-1)調節(jié)胰島素和葡萄糖代謝,抑制艱難梭菌孢子的萌發(fā)并下調炎癥[22]。短鏈脂肪酸(short chain fatty acids,SCFAs)是微生物在腸道中發(fā)酵產生的一類重要的代謝產物。乙酸、丙酸和丁酸為腸道中含量最多的3種SCFAs,占總體含量的95%以上。從拉布拉多犬糞便中分離的約氏乳桿菌CPN23可顯著提高同品種犬糞便中乙酸和丁酸的含量[23]?;悸阅c病犬糞便中SCFAs(尤其是乙酸和丙酸)的含量比健康犬低,這與糞便中微生物群落的顯著變化有關[24]。腸道中的微生物及其代謝產物通過調節(jié)特定的宿主信號通路,不僅與營養(yǎng)物質的吸收代謝密切相關,還參與腹瀉、炎性腸病等多種疾病的發(fā)生和發(fā)展[25-27]。
腸道菌群在動物生理和心理健康中均發(fā)揮重要作用,菌群的改變會導致腸道中膽汁酸、SCFAs等代謝產物的含量變化,進而影響機體健康狀況。長期以來營養(yǎng)都處于健康的中心地位,通過飲食改善腸道菌群結構的策略受到廣泛關注,在寵物食品中添加益生菌、益生元等對腸道菌群調節(jié)及微生態(tài)環(huán)境穩(wěn)定至關重要,是維護寵物健康和福利的重要手段。
2 益生菌在犬貓中的應用
國際益生菌與益生元科學協會(International Scientific Association for Probiotics and Prebiotics,ISAPP)對益生菌的最新定義為攝入一定量時對宿主健康產生有益作用的活體微生物[28]。最常見的益生菌為乳酸桿菌和雙歧桿菌等[29],在腸道中可競爭黏附于腸上皮,加強腸黏膜屏障,并且在改善宿主腸道微生物群、調節(jié)機體免疫力等方面發(fā)揮重要作用[30-31]。研究表明,發(fā)酵乳桿菌CCM7421可增加犬糞便乳酸桿菌相對豐度,降低梭狀芽孢桿菌及部分革蘭氏陰性菌相對豐度[32]。在犬糧中添加嗜酸乳桿菌DSM13241也可使糞便中乳酸菌相對豐度增加,并降低梭菌屬相對豐度[33]。在貓糧中添加嗜酸乳桿菌DSM13241可增加嗜酸乳桿菌等乳酸桿菌相對豐度,并降低梭狀芽孢桿菌和糞腸球菌相對豐度,使成年貓糞便pH降低,表明結腸微生態(tài)環(huán)境對有益乳酸菌群具有選擇性[34]。乳酸桿菌和雙歧桿菌是動物腸道中最早定植的菌群,動物雙歧桿菌可通過減弱體內核因子-κB(NF-κB)反應發(fā)揮抗炎作用[35]。雙歧桿菌AHC7對易患胃腸疾病的犬具有潛在的恢復健康的作用[36]。在實際生產中,一定比例的混合益生菌對機體健康表現出更高的優(yōu)勢,用枯草芽孢桿菌和地衣芽孢桿菌組成的復合益生菌可減少比格犬糞便惡臭氣味,除了降低酚類、喹啉含量外,還降低了腐胺、亞精胺和尸胺等生物胺的含量,從而在一定程度上改善腸道健康[37]。補充適當的益生菌可使老年動物腸道菌群結構年輕化,如干酪乳桿菌、植物乳桿菌和雙歧桿菌組成的復合益生菌通過調節(jié)腸道菌群結構,提高了各年齡階段犬血液免疫球蛋白G(IgG)、干擾素-α(IFN-α)和糞便分泌型免疫球蛋白A(sIgA)含量,降低腫瘤壞死因子-α(TNF-α)含量,同時增加腸道有益菌(乳酸菌、柔嫩梭菌等)相對豐度,減少潛在有害細菌(大腸桿菌、產氣莢膜梭菌和薩特氏菌屬等)相對豐度,使老年犬腸道菌群組成趨向于年輕犬,從而強化宿主免疫,改善機體健康狀況[38]。
除了被鑒定為益生菌的細菌,一些屬于真菌的酵母也對機體具有益生作用,如布拉迪酵母(Saccharomyces boulardii,S.boulardii),有不同于細菌的生理結構,也不受抗生素影響,具有良好的益生菌特性[39]。S. boulardii可預防和治療人類急性(腹瀉)或慢性(炎性腸病)胃腸道疾病[40]。起初S. boulardii在形態(tài)學和生理學上都被鑒定為釀酒酵母(Saccharomyces cerevisiae,S. cerevisiae),2002年有研究發(fā)現了僅存在于S. boulardii 4號基因座的專一性序列(CAG)9,并將其從S. cerevisiae的其他種中分離出來,確定為釀酒酵母亞種[41]。在犬糧中添加S. boulardii也可有效調節(jié)機體腸道菌群,并降低腹瀉發(fā)生率[42],但相關研究較少,有關貓的研究更是鮮有報道。
益生菌在機體內發(fā)揮有益作用的主要障礙是胃酸和膽鹽[29],胃部極低的pH和胃蛋白酶可以殺死大多數微生物[43],因此益生菌需要極高的耐受性才能通過胃部的惡劣環(huán)境;肝臟中的膽鹽分泌到腸道中,可增強營養(yǎng)物質的吸收,亦可破壞腸道微生物膜脂質層結構[44]。S. boulardii和芽孢桿菌可以抵抗膽鹽和水解酶的降解,在含有胃蛋白酶和鹽酸的模擬胃液中仍有活性,且在膽鹽的影響下也很穩(wěn)定[45]。選擇益生菌的重要前提是通過宿主胃腸道的存活率及對腸道上皮的特異黏附性,外源性益生菌在腸黏膜表面定植形成微生物膜,可加強腸黏膜屏障并維持腸道微生態(tài)環(huán)境穩(wěn)定。然而一些研究表明,益生菌在進入機體后不久,會隨糞便全部排出[46-47],益生菌在胃腸道酸性環(huán)境中的存活率以及能否在腸黏膜表面定植飽受爭議[29]。益生菌在腸上皮的黏附能力對菌株的定植至關重要,動物雙歧桿菌乳亞種LKM512,不僅表現出強大的耐酸性,還可與腸道黏蛋白黏附并大量增殖,可作為有效的犬類益生菌[48]。犬糞便來源嗜酸乳桿菌LAB20與犬結腸黏液的黏附性高于豬結腸分離的黏液,LAB20不僅與HT-29和Caco-2細胞具有黏附作用,且與犬腸道上皮細胞(intestinal epithelial cells,IECs)也有黏附性[49],能附著于犬腸道上皮并大量存活,顯示出腸道上皮屏障強化和抗炎作用[50]。從動物自身分離的益生菌能更有效地定植于其腸道中[51],宿主源微生物可能是最佳的益生菌制劑來源[52],從犬貓體內分離的有益微生物能更符合胃腸道自身的需求。
3 益生元在犬貓中的應用
隨著益生元的來源及應用越來越廣泛,ISAPP在2016年對益生元定義為:能被宿主微生物選擇性利用而對機體健康產生有益作用的物質[53]。膳食纖維作為常見的寵物食品添加劑,可改善腸道菌群結構,減少胃排空、血液中膽固醇含量及胃運輸時間,稀釋飲食熱量密度及增加飽腹感、糖攝入量等[54]。貓雖然是食肉動物,但其腸道中也存在微生物群,可發(fā)酵果聚糖、甜菜粕等膳食纖維[55],膳食纖維也會減少犬糞便中梭菌門相對豐度,增加厚壁菌門相對豐度,但這些變化在所有犬中并不一致[56]。
一些屬于纖維的功能性低聚糖和菊多糖在改善犬貓腸道菌群中起重要作用[57],在犬糧中單獨添加低聚果糖或與甘露寡糖混合使用,可提高回腸免疫球蛋白A(immunoglobulin A,IgA)的含量,降低糞便吲哚和苯酚含量,從而改善犬腸道健康和免疫狀態(tài)[58]。腸上皮細胞膜表面受體為糖蛋白,許多致病菌能通過Ⅰ型菌毛特異性識別糖蛋白受體,黏附于腸上皮細胞刺激感染的發(fā)生,甘露寡糖具有膜表面糖蛋白受體類似結構,可與帶有Ⅰ型菌毛的病原菌(沙門氏菌、大腸桿菌等)特異性結合,從而減少致病菌在胃腸道中的定植[59]。在犬貓體外糞便發(fā)酵系統(tǒng)中接種乳寡糖,可選擇性促進雙歧桿菌、乳酸桿菌增殖,抑制大腸桿菌、志賀菌和沙門氏菌等腸道致病菌生長和定植,并產生SCFAs和支鏈脂肪酸(branch chain fatty acids,BCFAs)等物質有益于宿主健康[60]。菊多糖又稱菊粉,菊苣纖維,在犬糧中添加菊多糖可使糞便中雙歧桿菌的相對豐度升高,產氣莢膜梭菌相對豐度降低,二者表現出拮抗性[61]。低聚果糖、纖維素和果膠等益生元,可增加貓糞便中有益菌(乳酸菌、雙歧桿菌等)相對豐度,減少大腸桿菌和產氣莢膜梭菌等有害菌相對豐度[62]。益生元不易被唾液、胰液和腸液中的酶類分解,具有良好的耐消化性,還具有耐酸堿、耐高溫、保存期長等優(yōu)點。不同益生元對犬貓腸道微生物群的組成和活性有不同的影響,攝入一定量后可減少致病菌在腸道中的定植,并經大腸微生物發(fā)酵后產生SCFAs等可降低腸道pH,提高礦物質的溶解吸收,進而有益于改善宿主健康狀況。
4 合生元在犬貓中的應用
研究表明,益生菌-益生元組合也可通過調節(jié)腸道菌群來改善宿主健康,某些特定的益生菌-益生元組合比僅含有益生菌或益生元的產品具有更佳的調節(jié)效果[63-64]。2020年ISAPP對合生元定義為由能被宿主微生物選擇利用的物質與活體微生物組成的,對機體健康有益的混合物[65]。合生元可選擇性刺激1種或多種細菌增殖或激活其代謝,能改善益生菌在宿主胃腸道中的存活和定植,同時又能刺激腸道中固有微生物的增殖。每日飼喂含有2×109 CFU的屎腸球菌NCIMB10415 4b1707、46.4 mg低聚果糖和阿拉伯樹膠的膠囊,可顯著降低犬腹瀉發(fā)生率,減少獸醫(yī)干預和動物飼養(yǎng)成本[66]。王閃閃[67]通過人體腸道微生物發(fā)酵模型,篩選出能顯著刺激益生菌生長的合生元組合,對有益菌均表現出積極的調節(jié)作用,但調節(jié)具有菌屬/種特異性。在體外評價合生元發(fā)酵犬糞便微生物的研究中,低聚半乳糖可促進兩歧雙歧桿菌02 450B的生長,二者組合可顯著增加糞便中雙歧桿菌相對豐度,對犬糞便菌群表現出更強的調節(jié)作用[68]。犬源發(fā)酵乳桿菌CCM7421已被證明對犬存在一定的健康益處(前文提到),與菊多糖組成合生元可使犬糞便中乳酸桿菌相對豐度增加,梭狀芽孢桿菌相對豐度降低,糞便pH下降,但二者的組合并未表現出強化發(fā)酵乳桿菌CCM7421的功效[69],表明并不是所有的益生菌與益生元組合都能發(fā)揮良好的合生元功效,只有特定的益生菌與益生元組合才被認為是合生元。
合生元對犬貓機體更具有調節(jié)優(yōu)勢,但目前合生元的研究尚處于初級階段,益生菌與益生元的配伍缺乏基礎的試驗數據,有效的合生元組合仍有待進一步研究。
5 小結及展望
為更好地了解犬貓新陳代謝,滿足寵物不同階段的生理需求,優(yōu)化伴侶動物的營養(yǎng)和健康狀況,益生菌、益生元等物質應用于功能性寵物食品,可改善犬貓腸道菌群結構及相關代謝產物含量,為伴侶動物的健康與福利提供保障。然而,益生菌在犬貓腸道中的存活率及定植問題仍有待改進,從寵物自身分離的微生物能更易適應犬貓腸道微生態(tài)環(huán)境,是良好的益生菌來源;益生元不需要考慮定植及存活率等問題,且易于保存運輸,能在腸道中發(fā)揮更穩(wěn)定持久的作用。除此之外,特定的益生菌-益生元組合對機體表現出更佳的優(yōu)勢,但有關具體配伍及使用還需大量的基礎研究。
參考文獻
[1]DI CERBO A, MORALES-MEDINA J C, PALMIERI B, et al. Functional foods in pet nutrition: focus on dogs and cats[J]. Research in Veterinary Science, 2017, 112: 161-166. DOI:10.1016/j.rvsc.2017.03.020
[2]HASLER C M. The changing face of functional foods[J]. Journal of the American College of Nutrition, 2000, 19(Suppl.5): 499S-506S.
[3] 陳寶江, 劉樹棟, 韓帥娟. 寵物腸道健康與營養(yǎng)調控研究進展[J]. 飼料工業(yè), 2020, 41(13): 9-13.
CHEN B J, LIU S D, HAN S J. Research development of nutritional regulation and intestinal health of pets[J]. Feed Industry, 2020, 41(13): 9-13 (in Chinese).
陳代文. 從動物營養(yǎng)學發(fā)展趨勢看飼料科技創(chuàng)新思路[J]. 飼料工業(yè), 2015, 36(6): 1-5.
CHEN D W. Ideas for feed technical innovations based on the prediction of future animal nutrition science[J]. Feed Industry, 2015, 36(6): 1-5 (in Chinese).
KIEFT T L, SIMMONS K A. Allometry of animal-microbe interactions and global census of animal-associated microbes[J]. Proceedings.Biological Sciences, 2015, 282(1810): 20150702.
[6]MCFALL-NGAI M, HADFIELD M G, BOSCH T C G, et al. Animals in a bacterial world, a new imperative for the life sciences[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9): 3229-3236. DOI:10.1073/pnas.1218525110
[7]FRAUNE S, BOSCH T C G. Why bacteria matter in animal development and evolution[J]. BioEssays, 2010, 32(7): 571-580. DOI:10.1002/bies.200900192
[8]SUCHODOLSKI J S. Diagnosis and interpretation of intestinal dysbiosis in dogs and cats[J]. Veterinary Journal, 2016, 215: 30-37. DOI:10.1016/j.tvjl.2016.04.011
[9]HONNEFFER J B, MINAMOTO Y, SUCHODOLSKI J S. Microbiota alterations in acute and chronic gastrointestinal inflammation of cats and dogs[J]. World Journal of Gastroenterology, 2014, 20(44): 16489-16497. DOI:10.3748/wjg.v20.i44.16489
[10]FRISWELL M K, GIKA H, STRATFORD I J, et al. Site and strain-specific variation in gut microbiota profiles and metabolism in experimental mice[J]. PLoS One, 2010, 5(1): e8584. DOI:10.1371/journal.pone.0008584
[11]HAND D, WALLIS C, COLYER A, et al. Pyrosequencing the canine faecal microbiota: breadth and depth of biodiversity[J]. PLoS One, 2013, 8(1): e53115. DOI:10.1371/journal.pone.0053115
[12]SWANSON K S, DOWD S E, SUCHODOLSKI J S, et al. Phylogenetic and gene-centric metagenomics of the canine intestinal microbiome reveals similarities with humans and mice[J]. The ISME Journal, 2011, 5(4): 639-649. DOI:10.1038/ismej.2010.162
[13]HANDL S, DOWD S E, GARCIA-MAZCORRO J F, et al. Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats[J]. FEMS Microbiology Ecology, 2011, 76(2): 301-310. DOI:10.1111/j.1574-6941.2011.01058.x
[14]FOSTER M L, DOWD S E, STEPHENSON C, et al. Characterization of the fungal microbiome (mycobiome) in fecal samples from dogs[J]. Veterinary Medicine International, 2013, 2013: 658373.
[15]CHABAN B, LINKS M G, HILL J E. A molecular enrichment strategy based on cpn60 for detection of epsilon-proteobacteria in the dog fecal microbiome[J]. Microbial Ecology, 2012, 63(2): 348-357. DOI:10.1007/s00248-011-9931-7
[16] 溫建新. 健康與腹瀉幼犬腸道菌群的比較研究[J]. 天津農業(yè)科學, 2011, 17(1): 109-113.
WEN J X. The comparison study on the intestinal microflora of the healthy and diarrhea puppies[J]. Tianjin Agricultural Sciences, 2011, 17(1): 109-113 (in Chinese). DOI:10.3969/j.issn.1006-6500.2011.01.028
MASUOKA H, SHIMADA K, KIYOSUE-YASUDA T, et al. Transition of the intestinal microbiota of dogs with age[J]. Bioscience of Microbiota, Food and Health, 2017, 36(1): 27-31. DOI:10.12938/bmfh.BMFH-2016-021
[18]MASUOKA H, SHIMADA K, KIYOSUE-YASUDA T, et al. Transition of the intestinal microbiota of cats with age[J]. PLoS One, 2017, 12(8): e0181739. DOI:10.1371/journal.pone.0181739
[19]RITCHIE L E, BURKE K F, GARCIA-MAZCORRO J F, et al. Characterization of fecal microbiota in cats using universal 16S rRNA gene and group-specific primers for Lactobacillus and Bifidobacterium spp[J]. Veterinary Microbiology, 2010, 144(1/2): 140-146.
[20]SUCHODOLSKI J S, RUAUX C G, STEINER J M, et al. Assessment of the qualitative variation in bacterial microflora among compartments of the intestinal tract of dogs by use of a molecular fingerprinting technique[J]. American Journal of Veterinary Research, 2005, 66(9): 1556-1562. DOI:10.2460/ajvr.2005.66.1556
[21]DUBOC H, RAJCA S, RAINTEAU D, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases[J]. Gut, 2013, 62(4): 531-539. DOI:10.1136/gutjnl-2012-302578
[22]PAVLIDIS P, POWELL N, VINCENT R P, et al. Systematic review: bile acids and intestinal inflammation-luminal aggressors or regulators of mucosal defence?[J]. Alimentary Pharmacology & Therapeutics, 2015, 42(7): 802-817.
[23]KUMAR S, PATTANAIK A K, SHARMA S, et al. Probiotic potential of a Lactobacillus bacterium of canine faecal-origin and its impact on select gut health indices and immune response of dogs[J]. Probiotics and Antimicrobial Proteins, 2017, 9(3): 262-277. DOI:10.1007/s12602-017-9256-z
[24]MINAMOTO Y, MINAMOTO T, ISAIAH A, et al. Fecal short-chain fatty acid concentrations and dysbiosis in dogs with chronic enteropathy[J]. Journal of Veterinary Internal Medicine, 2019, 33(4): 1608-1618. DOI:10.1111/jvim.15520
[25]HAVENAAR R. Intestinal health functions of colonic microbial metabolites: a review[J]. Beneficial Microbes, 2011, 2(2): 103-114. DOI:10.3920/BM2011.0003
[26]PARADA VENEGAS D, DE LA FUENTE M K, LANDSKRON G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases[J]. Frontiers in Immunology, 2019, 10: 277. DOI:10.3389/fimmu.2019.00277
[27]LEE W J, HASE K. Gut microbiota-generated metabolites in animal health and disease[J]. Nature Chemical Biology, 2014, 10(6): 416-424. DOI:10.1038/nchembio.1535
[28]HILL C, GUARNER F, REID G, et al. Expert consensus document.The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic[J]. Nature Reviews.Gastroenterology & Hepatology, 2014, 11(8): 506-514.
[29]BEZKOROVAINY A. Probiotics: determinants of survival and growth in the gut[J]. The American Journal of Clinical Nutrition, 2001, 73(Suppl.2): 399S-405S.
[30]BERMUDEZ-BRITO M, PLAZA-DíAZ J, MU?OZ-QUEZADA S, et al. Probiotic mechanisms of action[J]. Annals of Nutrition & Metabolism, 2012, 61(2): 160-174.
[31]CENCIC A, CHINGWARU W. The role of functional foods, nutraceuticals, and food supplements in intestinal health[J]. Nutrients, 2010, 2(6): 611-625. DOI:10.3390/nu2060611
[32]STROMPFOVá V, KUBA?OVá I, LAUKOVá A. Health benefits observed after probiotic Lactobacillus fermentum CCM 7421 application in dogs[J]. Applied Microbiology and Biotechnology, 2017, 101(16): 6309-6319. DOI:10.1007/s00253-017-8425-z
[33]BAILLON M L A, MARSHALL-JONES Z V, BUTTERWICK R F. Effects of probiotic Lactobacillus acidophilus strain DSM13241 in healthy adult dogs[J]. American Journal of Veterinary Research, 2004, 65(3): 338-343. DOI:10.2460/ajvr.2004.65.338
[34]MARSHALL-JONES Z V, BAILLON M L A, CROFT J M, et al. Effects of Lactobacillus acidophilus DSM13241 as a probiotic in healthy adult cats[J]. American Journal of Veterinary Research, 2006, 67(6): 1005-1012. DOI:10.2460/ajvr.67.6.1005
[35]O'MAHONY D, MURPHY S, BOILEAU T, et al. Bifidobacterium animalis AHC7 protects against pathogen-induced NF-κB activation in vivo[J]. BMC Immunology, 2010, 11: 63. DOI:10.1186/1471-2172-11-63
[36]KELLEY R L, MINIKHIEM D, KIELY B, et al. Clinical benefits of probiotic canine-derived Bifidobacterium animalis strain AHC7 in dogs with acute idiopathic diarrhea[J]. Veterinary Therapeutics: Research in Applied Veterinary Medicine, 2009, 10(3): 121-130.
[37]BASTOS T S, DE LIMA D C, SOUZA C M M, et al. Bacillus subtilis and Bacillus licheniformis reduce faecal protein catabolites concentration and odour in dogs[J]. BMC Vet Res, 2020, 16(1): 116. DOI:10.1186/s12917-020-02321-7
[38]XU H Y, HUANG W Q, HOU Q C, et al. Oral administration of compound probiotics improved canine feed intake, weight gain, immunity and intestinal microbiota[J]. Frontiers in Immunology, 2019, 10: 666. DOI:10.3389/fimmu.2019.00666
[39]CZERUCKA D, PICHE T, RAMPAL P. Review article: yeast as probiotics-Saccharomyces boulardii[J]. Alimentary Pharmacology & Therapeutics, 2007, 26(6): 767-778.
[40]KELESIDIS T, POTHOULAKIS C. Efficacy and safety of the probiotic Saccharomyces boulardii for the prevention and therapy of gastrointestinal disorders[J]. Therapeutic Advances in Gastroenterology, 2012, 5(2): 111-125. DOI:10.1177/1756283X11428502
[41]CZERUCKA D, RAMPAL P. Experimental effects of Saccharomyces boulardii on diarrheal pathogens[J]. Microbes and Infection, 2002, 4(7): 733-739. DOI:10.1016/S1286-4579(02)01592-7
[42]D'ANGELO S, FRACASSI F, BRESCIANI F, et al. Effect of Saccharomyces boulardii in dog with chronic enteropathies: double-blinded, placebo-controlled study[J]. The Veterinary Record, 2018, 182(9): 258. DOI:10.1136/vr.104241
[43]MARTINSEN T C, BERGH K, WALDUM H L. Gastric juice: a barrier against infectious diseases[J]. Basic & Clinical Pharmacology & Toxicology, 2005, 96(2): 94-102.
[44]FIETTO J L R, ARAúJO R S, VALAD?O F N, et al. Molecular and physiological comparisons between Saccharomyces cerevisiae and Saccharomyces boulardii[J]. Canadian Journal of Microbiology, 2004, 50(8): 615-621. DOI:10.1139/w04-050
[45]KABLUCHKO T V, BOMKO T V, NOSALSKAYA T N, et al. In the gastrointestinal tract exist the protective mechanisms which prevent overgrowth of pathogenic bacterial and its incorporation[J]. Annals of Mechnikov's Institute, 2017, 1: 28-33.
[46]SIERRA S, LARA-VILLOSLADA F, SEMPERE L, et al. Intestinal and immunological effects of daily oral administration of Lactobacillus salivarius CECT5713 to healthy adults[J]. Anaerobe, 2010, 16(3): 195-200. DOI:10.1016/j.anaerobe.2010.02.001
[47]WANG C X, NAGATA S, ASAHARA T, et al. Intestinal microbiota profiles of healthy pre-school and school-age children and effects of probiotic supplementation[J]. Annals of Nutrition & Metabolism, 2015, 67(4): 257-266.
[48]NAKAMURA A, OHNISHI Y, SHIROTORI K, MATSUMOTO M. Evaluation of viability Bifidobacterium animalis subsp.lactis LKM512 in dogs[J]. Benef Microbes, 2015, 6(6): 791-797. DOI:10.3920/BM2015.0050
[49]KAINULAINEN V, TANG Y R, SPILLMANN T, et al. The canine isolate Lactobacillus acidophilus LAB20 adheres to intestinal epithelium and attenuates LPS-induced IL-8 secretion of enterocytes in vitro[J]. BMC Microbiology, 2015, 15(1): 4. DOI:10.1186/s12866-014-0337-9
[50]TANG Y R, SARIS P E J. Viable intestinal passage of a canine jejunal commensal strain Lactobacillus acidophilus LAB20 in dogs[J]. Current Microbiology, 2014, 69(4): 467-473. DOI:10.1007/s00284-014-0610-z
[51]KUMAR S, PATTANAIK A K, SHARMA S, et al. Comparative assessment of canine-origin Lactobacillus johnsonii CPN23 and dairy-origin Lactobacillus acidophillus NCDC 15 for nutrient digestibility, faecal fermentative metabolites and selected gut health indices in dogs[J]. Journal of Nutritional Science, 2017, 6: e38. DOI:10.1017/jns.2017.35
[52]GRZE?KOWIAK ?, ENDO A, BEASLEY S, et al. Microbiota and probiotics in canine and feline welfare[J]. Anaerobe, 2015, 34: 14-23. DOI:10.1016/j.anaerobe.2015.04.002
[53]GIBSON G R, HUTKINS R, SANDERS M E, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics[J]. Nature Reviews.Gastroenterology & Hepatology, 2017, 14(8): 491-502.
[54]DE GODOY M R C, BAUER L L, PARSONS C M, et al. Select corn coproducts from the ethanol industry and their potential as ingredients in pet foods[J]. Journal of Animal Science, 2009, 87(1): 189-199. DOI:10.2527/jas.2007-0596
[55]ROCHUS K, JANSSENS G P J, HESTA M. Dietary fibre and the importance of the gut microbiota in feline nutrition: a review[J]. Nutrition Research Reviews, 2014, 27(2): 295-307. DOI:10.1017/S0954422414000213
[56]MIDDELBOS I S, VESTER BOLER B M, QU A, et al. Phylogenetic characterization of fecal microbial communities of dogs fed diets with or without supplemental dietary fiber using 454 pyrosequencing[J]. PLoS One, 2010, 5(3): e9768. DOI:10.1371/journal.pone.0009768
[57]HUSSEIN H S, FLICKINGER E A, FAHEY G C, J r. Petfood applications of inulin and oligofructose[J]. The Journal of Nutrition, 1999, 129(Suppl.7): 1454S-1456S.
[58]SWANSON K S, GRIESHOP C M, FLICKINGER E A, et al. Supplemental fructooligosaccharides and mannanoligosaccharides influence immune function, ileal and total tract nutrient digestibilities, microbial populations and concentrations of protein catabolites in the large bowel of dogs[J]. The Journal of Nutrition, 2002, 132(5): 980-989. DOI:10.1093/jn/132.5.980
[59]SPRING P, WENK C, DAWSON K A, et al. The effects of dietary mannaoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks[J]. Poultry Science, 2000, 79(2): 205-211. DOI:10.1093/ps/79.2.205
[60]OBA P M, VIDAL S, WYSS R, et al. Effect of a novel animal milk oligosaccharide biosimilar on the gut microbial communities and metabolites of in vitro incubations using feline and canine fecal inocula[J]. Journal of Animal Science, 2020, 98(9): skaa273.
[61]ZENTEK J, MARQUART B, PIETRZAK T, et al. Dietary effects on Bifidobacteria and Clostridium perfringens in the canine intestinal tract[J]. Journal of Animal Physiology and Animal Nutrition, 2003, 87(11/12): 397-407.
[62]BARRY K A, WOJCICKI B J, MIDDELBOS I S, et al. Dietary cellulose, fructooligosaccharides, and pectin modify fecal protein catabolites and microbial populations in adult cats[J]. Journal of Animal Science, 2010, 88(9): 2978-2987. DOI:10.2527/jas.2009-2464
[63]KOSUWON P, LAO-ARAYA M, UTHAISANGSOOK S, et al. A synbiotic mixture of scGOS/lcFOS and Bifidobacterium breve M-16V increases faecal Bifidobacterium in healthy young children[J]. Beneficial Microbes, 2018, 9(4): 541-552. DOI:10.3920/BM2017.0110
[64]PANDEY K R, NAIK S R, VAKIL B V. Probiotics, prebiotics and synbiotics—a review[J]. Journal of Food Science and Technology, 2015, 52(12): 7577-7587.
[65]SWANSON K S, GIBSON G R, HUTKINS R, et al. The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics[J]. Nature Reviews Gastroenterology & Hepatology, 2020, 17(11): 687-701.
[66]ROSE L, ROSE J, GOSLING S, et al. Efficacy of a probiotic-prebiotic supplement on incidence of diarrhea in a dog shelter: a randomized, double-blind, placebo-controlled trial[J]. Journal of Veterinary Internal Medicine, 2017, 31(2): 377-382.
[67] 王閃閃. 基于人腸道微生物體外發(fā)酵模型的益生元和益生菌的功能評價和配伍研究[D]. 碩士學位論文. 無錫: 江南大學, 2020.
WANG S S. Functional evaluation and compatibility research of prebiotics and probiotics based on human gut microbiota in vitro fermentation model[D]. Master's Thesis. Wuxi: Jiangnan University, 2020. (in Chinese)
OGUé-BON E, KHOO C, MCCARTNEY A L, et al. In vitro effects of synbiotic fermentation on the canine faecal microbiota[J]. FEMS Microbiology Ecology, 2010, 73(3): 587-600.
[69]STROMPFOVá V, LAUKOVá A, CILIK D. Synbiotic administration of canine-derived strain Lactobacillus fermentum CCM 7421 and inulin to healthy dogs[J]. Canadian Journal of Microbiology, 2013, 59(5): 347-352.
相關知識
Research progress and potential mechanism of postbiotics in alleviating gastrointestinal diseases
The mechanism and application of probiotics in promoting gastrointestinal health
Interaction between polysaccharide and intestinal flora and its structure
Research Progress of Animal Oxidative Stress and Its Nutritional Regulation
Progress in research on environmental exposure and health hazards of heavy metals in China
Research progress in health management theory and its application in chronic disease management
Progress in Basic Research and Intervention Techniques for Mental Health Problems
Progress of research on the environmental and genetic influencing factors of colorectal cancer
Journal of Oral Hygiene and Health
益生菌對皮膚健康的影響及其作用機制研究
網址: Research Progress of Probiotics, Prebiotics, Synbiotics and Intestinal Health in Canine and Feline http://www.u1s5d6.cn/newsview1644050.html
推薦資訊
- 1發(fā)朋友圈對老公徹底失望的心情 12775
- 2BMI體重指數計算公式是什么 11235
- 3補腎吃什么 補腎最佳食物推薦 11199
- 4性生活姿勢有哪些 盤點夫妻性 10428
- 5BMI正常值范圍一般是多少? 10137
- 6在線基礎代謝率(BMR)計算 9652
- 7一邊做飯一邊躁狂怎么辦 9138
- 8從出汗看健康 出汗透露你的健 9063
- 9早上怎么喝水最健康? 8613
- 10五大原因危害女性健康 如何保 7828