Progress and prospect of environmental factors and male reproductive damage
引用本文
XIA Yankai, CHEN Qing. Progress and prospect of environmental factors and male reproductive damage[J]. Journal of Army Medical University, 2023, 45(9): 861-868. DOI: 10.16016/j.2097-0927.202302014
這篇開放獲取文章遵循CC BY許可協(xié)議
環(huán)境因素與男性生殖損害研究進(jìn)展與展望
1. 211166 南京,南京醫(yī)科大學(xué)生殖醫(yī)學(xué)國家重點(diǎn)實(shí)驗(yàn)室,南京醫(yī)科大學(xué)公共衛(wèi)生學(xué)院;
2. 400038 重慶,陸軍軍醫(yī)大學(xué)(第三軍醫(yī)大學(xué))軍事預(yù)防醫(yī)學(xué)系毒理學(xué)研究所,電磁輻射醫(yī)學(xué)防護(hù)教育部重點(diǎn)實(shí)驗(yàn)室
收稿: 2023-02-02;修回: 2023-02-25
基金項(xiàng)目: 國家重點(diǎn)研發(fā)計劃(2022YFC2702900);國家自然科學(xué)基金重點(diǎn)項(xiàng)目(82130097)
通信作者: 夏彥愷,二級教授,博士生導(dǎo)師,國家重大人才計劃特聘教授、國家優(yōu)青、教育部新世紀(jì)優(yōu)秀人才、江蘇省杰青及多個創(chuàng)新團(tuán)隊(duì)帶頭人。環(huán)境與人類健康國家級國際聯(lián)合研究中心副主任,生殖醫(yī)學(xué)國家重點(diǎn)實(shí)驗(yàn)室和現(xiàn)代毒理學(xué)教育部重點(diǎn)實(shí)驗(yàn)室方向帶頭人。兼任國家衛(wèi)生應(yīng)急體系建設(shè)指導(dǎo)專家、國家食品安全風(fēng)險評估專家委員會委員,入選中國學(xué)術(shù)影響力公共衛(wèi)生與預(yù)防醫(yī)學(xué)領(lǐng)域百強(qiáng)、婦產(chǎn)與生殖醫(yī)學(xué)領(lǐng)域百強(qiáng)。擔(dān)任中華預(yù)防醫(yī)學(xué)會、中國醫(yī)促會等多個學(xué)會的常務(wù)理事和分會副主委;國際暴露科學(xué)學(xué)會、亞洲出生隊(duì)列聯(lián)盟學(xué)術(shù)委員會委員。擔(dān)任Environ Int、Food Chem Toxicol等期刊編委、副主編。先后主持國家重點(diǎn)研發(fā)計劃,國家自然科學(xué)基金重點(diǎn)、國合、優(yōu)青等十余項(xiàng)國家級項(xiàng)目。獲國家科學(xué)技術(shù)進(jìn)步獎二等獎、省部級科技進(jìn)步獎一等獎。在Nat Genet、Environ Health Persp、Environ Sci Technol、Environ Int、J Hazard Mater等期刊以第一/通信作者發(fā)表論著100余篇。主要從事環(huán)境與健康方面的研究。E-mail: yankaixia@njmu.edu.cn
[摘要] 男性生殖損害是我國和國際面臨的重大衛(wèi)生健康挑戰(zhàn)。環(huán)境因素是當(dāng)前導(dǎo)致男性生殖損害的重要原因之一。識別這些環(huán)境因素,闡明其損傷機(jī)制并研發(fā)針對性的防治策略,對于維護(hù)男性生殖健康,提升國家人口安全具有重要意義。本文概述近期環(huán)境因素導(dǎo)致男性生殖損傷相關(guān)研究進(jìn)展:在有害因素識別方面,電磁輻射、新興環(huán)境污染物、新冠病毒等物理、化學(xué)和生物因素的男性生殖損害效應(yīng)正逐步被認(rèn)識;在生殖損害的發(fā)生機(jī)制方面,鐵死亡、晝夜節(jié)律與生物鐘、表觀遺傳與染色質(zhì)特征以及腸道菌群介導(dǎo)的環(huán)境因素致男性生殖損害機(jī)制成為新的研究熱點(diǎn)。未來本領(lǐng)域?qū)⒕o跟環(huán)境變化新形勢,借助基礎(chǔ)理論研究新進(jìn)展及多學(xué)科交叉融合,深入探索復(fù)雜暴露等關(guān)鍵問題,人群與實(shí)驗(yàn)室研究相結(jié)合推動研究成果向衛(wèi)生防控實(shí)踐轉(zhuǎn)化。
[關(guān)鍵詞] 環(huán)境因素 男性 生殖損害
Progress and prospect of environmental factors and male reproductive damage
XIA Yankai1 , CHEN Qing2
1. State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, 211166;
2. Key Lab of Medical Protection for Electromagnetic Radiation of Ministry of Education, Institute of Toxicology, Faculty of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
Supported by the National Key Research and Development Program of China (2022YFC2702900) and the Key Program of National Natural Science Foundation of China (82130097)
[Abstract] Male reproductive damage is a major health challenge China and the world are facing. Environmental factors are one of the most important causes of male reproductive damage. Identifying these environmental factors, elucidating their damage mechanisms and developing targeted prevention and control strategies are of great significances in maintenance of male reproductive health and improvement of national population security. In this article, we summarize the recent progress on male reproductive damage caused by environmental factors. In male-reproductive toxicity, physical, chemical and biological factors, including electromagnetic radiation, emerging environmental contaminants and corona virus disease 2019 (COVID-19) etc., have been recently recognized. On the other hand, ferroptosis, circadian rhythm & circadian clock, epigenetics & chromatin characteristics, as well as microbiota have been noticed to play important roles in the mechanism of the damage caused by environmental factors. In the future, we should focus on the new challenges of environmental changes, make full use of the advances in basic research and interdisciplinary integration, profoundly explore the key issues such as combinative exposure, and promote the transformation of research results into health prevention and control practices by combining population and laboratory research.
[Key words] environmental factors male reproductive damage
我國的總和生育率偏低,出生人口規(guī)模持續(xù)下降,聯(lián)合國人口司預(yù)測,我國人口總量在2022年達(dá)到峰值,人口增長很快轉(zhuǎn)入零增長或負(fù)增長區(qū)間。除了適齡人口生育意愿的降低外,生殖系統(tǒng)損害也是影響生育率的重要因素[1]。據(jù)不完全統(tǒng)計,不孕不育影響著全球8%~12%的夫婦,其中男性因素的貢獻(xiàn)約占一半[2]。據(jù)調(diào)查顯示,1940-2013年,全球人類的精子數(shù)量和質(zhì)量均出現(xiàn)了明顯的下降[3],這一過程可能還在持續(xù)[4],我國的情況與之基本一致[5]。許多危險因素會導(dǎo)致男性生殖損害,包括先天性、后天性和特發(fā)性因素。隨著工業(yè)化和社會經(jīng)濟(jì)的快速發(fā)展,環(huán)境因素成為誘發(fā)男性生殖損害的重要因素,識別這些環(huán)境因素,闡明其損傷機(jī)制并研發(fā)針對性的防治策略,對于維護(hù)男性生殖健康,提升國家人口安全具有重要意義。本文總結(jié)近期環(huán)境因素導(dǎo)致男性生殖損傷相關(guān)研究進(jìn)展,并對未來的研究方向進(jìn)行展望。
1 環(huán)境來源的男性生殖損害因素的識別研究進(jìn)展
影響男性生殖健康的環(huán)境因素種類龐雜,并且隨著研究的深入,不斷有新的因素被發(fā)現(xiàn)可能導(dǎo)致男性生殖損害。按照其性質(zhì)進(jìn)行區(qū)分,大致可分為物理因素、化學(xué)因素、生物因素三大類。
1.1 致男性生殖損害的物理因素識別研究
作為現(xiàn)代社會中無處不在的外源性物理因素,輻射對男性生殖影響不容小覷。電離輻射能夠釋放電子,因此具有一定危險性[6];而非電離輻射能夠激發(fā)電子產(chǎn)生熱量,進(jìn)而刺激活性氧的產(chǎn)生,可間接產(chǎn)生損害作用[7-8]。有研究表明,受到輻射的個體其精子微管可能發(fā)生修飾,并且線粒體由于活性氧的累積而發(fā)生損害[9]。過量的活性氧主要通過影響支持細(xì)胞、睪丸間質(zhì)細(xì)胞和生殖細(xì)胞,從而造成睪丸組織損傷,最終導(dǎo)致精子發(fā)生障礙,致使生成的精子形態(tài)和功能受損,甚至DNA也受到損傷[10-12]。同時,睪丸間質(zhì)細(xì)胞數(shù)量的減少進(jìn)一步影響睪酮的分泌,從而破壞整個下丘腦-垂體-性腺軸[13]。但目前的損傷機(jī)制尚不明確,亟需聯(lián)合生物學(xué)與物理學(xué)開展交叉研究加以闡明。此外,最近的文獻(xiàn)提示,夜間光照等其他物理因素也可能與男性生殖損害有關(guān)[14-15]。例如以色列的一項(xiàng)橫斷面人群研究發(fā)現(xiàn),在116名接受生殖檢查的志愿者中,夜間電子屏幕暴露(手機(jī)、平板電腦)與精子活動力指標(biāo)以及精子濃度呈負(fù)相關(guān)[14]。而在埃及開展的一項(xiàng)兩樣本研究也顯示,不論在少弱畸精子癥患者中還是在可育男性中,夜間光照暴露均與血液和精液中褪黑素水平負(fù)相關(guān),而褪黑素水平與精子總活力在少弱畸精子癥患者中呈正相關(guān)[15]。這些現(xiàn)象背后的分子機(jī)制可能涉及最近較受關(guān)注的生物鐘。隨著全球變暖受到更多關(guān)注,熱暴露導(dǎo)致的雄性生殖損害也成為重新審視的研究問題[16]。
1.2 致男性生殖損害的化學(xué)因素識別研究
隨著社會發(fā)展與技術(shù)革新,大量具有內(nèi)分泌干擾潛力的化學(xué)物被釋放到環(huán)境中,對男性生殖健康構(gòu)成威脅。近年來,國際上提出的新興環(huán)境污染物(emerging environmental contaminants,EECs)的概念引起各界廣泛關(guān)注,意指已在環(huán)境中明確存在,危害人體健康和生態(tài)環(huán)境,但因使用歷史較短或發(fā)現(xiàn)危害較晚、尚無法律法規(guī)和標(biāo)準(zhǔn)予以控制的化合物。新近的研究顯示,EECs中的多種類型都可能具有男性生殖毒性,如全氟烷基化合物暴露與睪丸功能障礙之間存在關(guān)聯(lián)[17];微塑料暴露導(dǎo)致小鼠附睪存活精子數(shù)量顯著減少,精子畸形率增加,睪丸生精細(xì)胞萎縮、脫落和凋亡[18-20]。納米顆粒暴露導(dǎo)致大鼠睪丸氧化應(yīng)激增加,誘發(fā)自噬和凋亡,出現(xiàn)性激素和精子畸形改變[21]。特別值得注意的是,除了對親代的雄性生殖損害以外,環(huán)境化學(xué)物通過父系暴露導(dǎo)致的傳代效應(yīng)正逐漸受到關(guān)注,突破了過去對傳代效應(yīng)的研究主要關(guān)注雌性的傳統(tǒng)視角[22]。此外,鄰苯二甲酸酯、雙酚系、殺蟲劑和阻燃劑等也是與男性不育風(fēng)險有關(guān)的重要化學(xué)物[23-25]。盡管現(xiàn)有研究已經(jīng)表明許多常見的單一化學(xué)物對男性生殖系統(tǒng)具有危害,但要準(zhǔn)確評估環(huán)境化學(xué)物綜合暴露的健康效應(yīng)仍存在較大挑戰(zhàn)[26]。
1.3 致男性生殖損害的生物因素識別研究
生物污染一詞涵蓋了由環(huán)境中生物體的生物活動而引起的所有污染的情況。就生殖系統(tǒng)而言,最常見的生物污染物是微生物。男性生殖器官容易受到微生物感染并產(chǎn)生炎癥反應(yīng),而精液則被認(rèn)為可能是病毒感染的載體[27]。據(jù)報道,精液是大約27種病毒的宿主,包括埃博拉病毒、乙型和丙型肝炎病毒、寨卡病毒、人類免疫缺陷病毒等[28-30]。這些病毒都可能對男性生育力造成直接影響:一方面,一些病毒如乙型肝炎和丙型肝炎病毒、新型冠狀病毒可改變精子的活力[31];另一方面,人類免疫缺陷病毒等多種病毒以睪丸和附睪為目標(biāo),誘發(fā)嚴(yán)重的炎癥反應(yīng)[32-33]。2019年底暴發(fā)的新型冠狀病毒肺炎(COVID-19)迅速成為了全球范圍內(nèi)的重大流行病。由于新冠病毒的關(guān)鍵作用靶點(diǎn)ACE2在睪丸中生理性高表達(dá),新冠感染是否導(dǎo)致男性生殖損害成為關(guān)注熱點(diǎn)。新冠肺炎患者的尸檢結(jié)果顯示,睪丸組織中可檢出新冠病毒DNA[34]。該病毒可能引起睪丸和男性生殖道等的組織病理學(xué)或功能變化,繼而通過免疫或炎癥反應(yīng)造成睪丸生精功能障礙[35-37]。需要注意的是,關(guān)于新型冠狀病毒感染對男性生殖系統(tǒng)的影響特別是長期影響,目前的研究證據(jù)仍比較缺乏,且結(jié)論并不完全一致。接種新型冠狀病毒相關(guān)疫苗是否對男性生殖健康產(chǎn)生影響也是目前受到關(guān)注的問題[38]。
2 環(huán)境因素致男性生殖損害的機(jī)制研究進(jìn)展
環(huán)境因素導(dǎo)致男性生殖損害的作用機(jī)制一直是本領(lǐng)域的研究重點(diǎn)。既往的研究大部分聚焦于如細(xì)胞氧化應(yīng)激、DNA甲基化水平改變、生殖激素代謝紊亂等方面。而新的研究表明,鐵死亡、生物鐘、染色質(zhì)特征和跨代遺傳以及腸道微生物等分子機(jī)制與環(huán)境因素導(dǎo)致的男性生殖損害也存在密切聯(lián)系。
2.1 鐵死亡
鐵死亡(ferroptosis)是近年來發(fā)現(xiàn)的一種鐵依賴性的細(xì)胞程序性死亡方式,與細(xì)胞凋亡、壞死和自噬有所區(qū)別。其主要機(jī)制是過量鐵導(dǎo)致的芬頓反應(yīng)或細(xì)胞內(nèi)的抗氧化功能異常,誘發(fā)脂質(zhì)過氧化,最終導(dǎo)致細(xì)胞死亡[39]。線粒體功能受損是鐵死亡的標(biāo)志性事件[40]。維持哺乳動物睪酮合成和精子發(fā)生均需要適當(dāng)含量的鐵參與[41],而鐵超載會引發(fā)睪丸氧化應(yīng)激、脂質(zhì)過氧化甚至鐵死亡,進(jìn)而導(dǎo)致男性生殖損害[42]。一項(xiàng)體外實(shí)驗(yàn)發(fā)現(xiàn),培養(yǎng)液中加入低濃度的亞鐵/抗壞血酸使精子內(nèi)氧自由基增多,精子線粒體膜電位降低,體外受精能力受損[43]。有研究發(fā)現(xiàn),苯二甲酸二(2-乙基己基)酯會引起線粒體形態(tài)受損和脂質(zhì)過氧化,誘發(fā)睪丸細(xì)胞鐵死亡,使小鼠血睪屏障功能受損[44]。亞砷酸鹽暴露使小鼠睪丸內(nèi)鐵積累,誘發(fā)細(xì)胞氧化應(yīng)激和線粒體損傷,并激活與鐵死亡相關(guān)的信號通路使睪丸內(nèi)生精細(xì)胞大面積凋亡[45]。鑒于鐵死亡相關(guān)分子機(jī)制與男性生殖系統(tǒng)特別是精子生理功能存在的密切聯(lián)系,預(yù)計未來一段時間將有較多研究揭示各種環(huán)境因素通過鐵死亡通路導(dǎo)致男性生殖損害的分子機(jī)制。
2.2 晝夜節(jié)律與生物鐘
晝夜節(jié)律是由內(nèi)源性生物鐘調(diào)控的周期性生理振蕩,其以Clock、Bmal1等核心生物鐘基因構(gòu)成的轉(zhuǎn)錄-翻譯負(fù)反饋環(huán)路為基礎(chǔ),一方面可自發(fā)性振蕩,并調(diào)控下游大量鐘控基因產(chǎn)生節(jié)律變化,從而影響各種生理功能;另一方面其還可對光照等環(huán)境因素產(chǎn)生響應(yīng),使自身節(jié)律與環(huán)境變化相適應(yīng)[46]。近年來研究顯示,睪酮合成、精子發(fā)生等多種男性生殖系統(tǒng)的重要生理功能均有生物鐘基因的參與,特別是其對睪酮合成的調(diào)控機(jī)制研究較為深入[47-48]。研究發(fā)現(xiàn),生物鐘基因Nr1d1可結(jié)合到睪酮合成關(guān)鍵基因StAR的啟動子RORE元件區(qū)域并抑制其表達(dá),從而調(diào)控后者對膽固醇的轉(zhuǎn)運(yùn),最終影響睪酮合成,而雙酚A等環(huán)境污染物干擾睪酮合成的分子機(jī)制與之有關(guān)[49]。夜間光照是干擾晝夜節(jié)律的常見環(huán)境因素[50-51],其也可改變生殖激素軸,暴露于夜間光照的鱸魚和蟑螂的雌性和雄性個體的17β-雌二醇和11-酮睪酮血清濃度均顯著降低[52]。此外,能量攝入的時機(jī)等因素是調(diào)控晝夜節(jié)律的重要環(huán)境因素[53],其對男性生殖功能的影響及分子機(jī)制值得深入研究。
2.3 表觀遺傳與染色質(zhì)特征
表觀遺傳異常引起的雄性不育問題一直是生殖醫(yī)學(xué)領(lǐng)域關(guān)注的焦點(diǎn)。近年來研究顯示DNA甲基化、組蛋白修飾以及染色質(zhì)重塑等機(jī)制均可能參與其中。動物實(shí)驗(yàn)顯示大鼠暴露于鄰苯二甲酸酯后,睪丸間質(zhì)細(xì)胞的從頭甲基轉(zhuǎn)移酶和維持甲基轉(zhuǎn)移酶基因轉(zhuǎn)錄水平和蛋白表達(dá)水平上調(diào),從而損害雄性生殖功能[54]。PM2.5暴露導(dǎo)致雄性小鼠性激素和精液損傷的動物模型中,同樣發(fā)現(xiàn)其睪丸5-甲基胞嘧啶的總體甲基化水平顯著改變,特別是Cyp11a1和Pax8等參與睪酮合成和精子發(fā)生的關(guān)鍵基因甲基化水平升高[55]。人群研究中也發(fā)現(xiàn),PM10暴露與精子羥甲基化水平存在關(guān)聯(lián)[56]。而對農(nóng)藥草銨膦的雄性生殖毒性研究則發(fā)現(xiàn),草銨膦導(dǎo)致的小鼠精子H3K4me3和H3K27ac組蛋白變化圖譜與子代胚胎植入前的基因表達(dá)圖譜變化一致,提示其雄性生殖毒性可能通過組蛋白表觀遺傳機(jī)制形成傳代損害效應(yīng)[57]。
多種環(huán)境內(nèi)分泌干擾物(environmental endocrine disruptors,EDCs)可與人體內(nèi)多種激素協(xié)同或拮抗靶向核受體,這類受體和一些具有組蛋白乙酰轉(zhuǎn)移酶活性的共激活因子一起調(diào)節(jié)特定靶基因的轉(zhuǎn)錄[58]。例如有機(jī)錫化合物的雄性生殖毒性可能是由組蛋白乙?;淖兒蟮漠惓;虮磉_(dá)引起的[59]。精子染色質(zhì)中的組蛋白保留可能是表觀遺傳中跨代遺傳的另一種機(jī)制,如雄性大鼠暴露于有機(jī)農(nóng)藥7 d后,發(fā)現(xiàn)組蛋白H3K27me3仍保留于F3代的精子中。
精子變形進(jìn)程中,大多數(shù)組蛋白被魚精蛋白取代,染色質(zhì)隨之發(fā)生劇烈變化,這也是雄性表觀遺傳調(diào)控的重要形式[60]。有研究通過對雄性小鼠氣管內(nèi)滴注納米二氧化硅,發(fā)現(xiàn)其抑制了RNF8-ubH2A/ubH2B途徑,使組蛋白與魚精蛋白不完全交換,引發(fā)DNA損傷,影響精子發(fā)生[61]。在精子發(fā)生過程中,染色質(zhì)包裝和重塑的缺陷引起的DNA損傷在不同程度上影響男性生殖健康[62]。最新研究顯示,線蟲經(jīng)受輻射暴露后,其F2代的死亡率出現(xiàn)有性別差異的上升(僅見于雄性),機(jī)制研究發(fā)現(xiàn)其原因是雄性生殖細(xì)胞通過易錯的DNA損傷修復(fù)機(jī)制聚合酶θ介導(dǎo)的末端連接(theta-mediated end joining,TMEJ)將損傷的DNA片段隨機(jī)融合,而這些染色體受到組蛋白H1緊密包裹,難以接受正確修復(fù),最終導(dǎo)致基因組不穩(wěn)定性增加并不斷累積[6]。
2.4 腸道菌群
腸道菌群是生活在人類胃腸道中的復(fù)雜而動態(tài)的微生物種群,在維持人類健康和疾病發(fā)展中發(fā)揮著重要作用。最近的證據(jù)表明,腸道菌群與男性生育能力之間存在密切聯(lián)系,由腸道菌群易位引起的免疫系統(tǒng)激活會導(dǎo)致睪丸和附睪炎癥,還會引發(fā)胰島素抵抗和胃腸道激素分泌紊亂,進(jìn)而影響性激素生成和精子發(fā)生異常[63]。腸道微生物還與睪丸微生物共同影響雄性生殖,其中腸道菌群通過改變膽汁酸水平影響腸道維生素A的吸收,而后者生理上可通過血液循環(huán)轉(zhuǎn)移到睪丸,這最終導(dǎo)致精原細(xì)胞分化水平的下降[64]。EDCs也可引起腸道菌群的生態(tài)失調(diào),影響免疫系統(tǒng)的激活,引發(fā)機(jī)體代謝紊亂進(jìn)而影響精子發(fā)生。一些EDCs還會損害血睪屏障的完整性使精子的數(shù)量和質(zhì)量下降,而腸道菌群又可以保護(hù)生殖細(xì)胞免受環(huán)境有害物質(zhì)的影響[65]。近來還有研究提示,產(chǎn)前EDCs暴露和隨之而來的腸道-生殖器微生物群損傷可能是男性不育癥發(fā)病機(jī)制的起源[66]。例如,妊娠期接觸鄰苯二甲酸二丁酯使孕婦機(jī)體內(nèi)擬桿菌、普雷沃氏菌和普氏菌的豐度增加,引起后代腸道菌群失調(diào),生精細(xì)胞萎縮和凋亡,導(dǎo)致子代睪丸損傷[67]。
3 未來的研究趨勢展望 3.1 關(guān)注新型環(huán)境因素
當(dāng)前,自然環(huán)境和社會環(huán)境均經(jīng)歷劇烈變化,一些新型環(huán)境因素需研究者引起重視。前文所述的新興環(huán)境污染物,如微塑料、新型農(nóng)藥、消毒副產(chǎn)物、全氟化合物等已被發(fā)現(xiàn)廣泛存在于人類接觸環(huán)境中,而其男性生殖毒性仍亟待評估。值得注意的是,隨著新能源產(chǎn)業(yè)等帶有環(huán)保宗旨的行業(yè)興起,太陽能電池板的生產(chǎn)、新能源電池的臨期報廢等又帶來了新的環(huán)境挑戰(zhàn),這些新型環(huán)境因素對男性生殖健康的影響不容忽視。氣候變化對健康的影響日益受到國際關(guān)注,其伴隨的各類環(huán)境暴露,如熱浪、寒潮、山火甚至凍土和冰川融化導(dǎo)致的遠(yuǎn)古病原體復(fù)蘇等對男性生殖健康的威脅呈現(xiàn)出許多與以往不同的特點(diǎn),亟需開展新研究加以評估。對我國而言,2030年碳達(dá)峰和2060年碳中和的重大國際承諾必將伴隨著巨大時空尺度上環(huán)境因素暴露的深刻變化,這為研究環(huán)境因素對男性生殖健康的影響,特別是環(huán)境治理/改善的正面影響提供了全新的研究契機(jī)。
3.2 借助多學(xué)科交叉推動研究理論和技術(shù)進(jìn)步
生殖系統(tǒng)生理研究、醫(yī)學(xué)和生物學(xué)基礎(chǔ)研究乃至其他各學(xué)科基礎(chǔ)研究的進(jìn)展是環(huán)境生殖健康領(lǐng)域前行的重要推動力??梢灶A(yù)見本領(lǐng)域下一階段的發(fā)展仍將繼續(xù)受益于基礎(chǔ)理論研究新進(jìn)展和多學(xué)科交叉融合。例如,健康與疾病的父系起源理論(the paternal origins of health and disease, POHaD)提示了環(huán)境因素暴露可能通過干擾雄性生殖細(xì)胞的發(fā)育進(jìn)而影響子代健康,為環(huán)境與男性生殖損害相關(guān)研究提供了新思路[68]。隨著宏基因組、代謝組學(xué)、表觀遺傳學(xué)等基礎(chǔ)研究領(lǐng)域的發(fā)展,精子發(fā)生、跨代遺傳、輔助生殖過程中的基礎(chǔ)生物學(xué)機(jī)制得到深入解讀,為男性生殖損害的相關(guān)機(jī)制研究指明方向。各種新的研究技術(shù)也正被逐漸應(yīng)用于環(huán)境與健康領(lǐng)域研究。例如,基于人工智能技術(shù)可實(shí)現(xiàn)胚胎監(jiān)測,從而探究環(huán)境因素對胚胎發(fā)育全過程的影響[69]。大數(shù)據(jù)分析技術(shù)的應(yīng)用也使得研究者可在龐雜的環(huán)境與健康數(shù)據(jù)中尋找到潛在的關(guān)鍵病因鏈[70]。同時,多組學(xué)技術(shù)、類器官技術(shù)在環(huán)境因素致男性生殖損害的機(jī)制研究方面發(fā)揮著重要作用??偠灾P(guān)注基礎(chǔ)理論研究的新進(jìn)展、加強(qiáng)環(huán)境健康與多學(xué)科交叉將為本領(lǐng)域注入活力、指明方向。
3.3 優(yōu)化環(huán)境暴露評估、風(fēng)險因子識別和關(guān)鍵窗口識別的方法
目前的研究多探究單一環(huán)境因素與男性生殖損害之間的關(guān)聯(lián),這與真實(shí)世界中的復(fù)雜暴露情形存在差距。為了克服這一缺陷,暴露組的概念被提出,并促進(jìn)環(huán)境暴露評估手段不斷豐富,例如基于電感耦合等離子體質(zhì)譜可對人血清中多種金屬元素水平進(jìn)行測定[71],基于衛(wèi)星采集的大氣氣溶膠數(shù)據(jù)進(jìn)行反演可對個體顆粒物暴露情況進(jìn)行評估[72],基于微生物擴(kuò)增子16s測序技術(shù)可對腸道微生物群落進(jìn)行測定[73]。隨著人工智能及機(jī)器學(xué)習(xí)算法的不斷更新,混合暴露的分析方法也不斷豐富。例如基于加權(quán)分位數(shù)之和回歸模型和貝葉斯核機(jī)器回歸等,可對多種環(huán)境不良因素的風(fēng)險貢獻(xiàn)度進(jìn)行評估,有利于識別關(guān)鍵風(fēng)險因子[74]。計算毒理學(xué)和毒性通路研究領(lǐng)域的進(jìn)步也為我們更高效地探索環(huán)境因素復(fù)雜暴露下的雄性生殖毒性提供了新的研究工具[75]。同時,多報告模型、分布滯后模型也逐漸被接受,成為明確關(guān)鍵時間窗的重要手段[76],這對于精準(zhǔn)預(yù)防策略的制定有重要的指導(dǎo)意義。
3.4 開展高水平人群隊(duì)列研究
鑒于隊(duì)列研究在因果時序上的合理性,人群隊(duì)列在探究環(huán)境與健康關(guān)聯(lián)、驗(yàn)證干預(yù)效果上發(fā)揮著重要作用。當(dāng)前,國內(nèi)外已建立多個一般人群隊(duì)列及輔助生殖隊(duì)列,如北美孕前隊(duì)列、美國紐約上州出生隊(duì)列、北歐丹麥國家出生隊(duì)列等,為明確環(huán)境與男性生殖損害之間的關(guān)系提供了豐富的人群證據(jù)。但當(dāng)前仍存在一些問題,如相關(guān)人群證據(jù)主要來自單中心隊(duì)列,而由于環(huán)境差異、種族差異、生活習(xí)慣差異以及暴露水平差異,基于單中心有限樣本進(jìn)行暴露評估及效應(yīng)評價的外推性受到較大限制。未來應(yīng)以大規(guī)模的人群數(shù)據(jù)作為基礎(chǔ),在更廣泛的地區(qū)和更多樣的人群中開展多中心或區(qū)域?qū)Ρ妊芯?。同時,由于項(xiàng)目時間短、關(guān)注內(nèi)容局限、經(jīng)費(fèi)有限等原因,一些隊(duì)列規(guī)模有限且難以長期維護(hù),造成信息損失與資源浪費(fèi),在今后的隊(duì)列統(tǒng)籌建設(shè)中應(yīng)更加注重規(guī)?;?、標(biāo)準(zhǔn)化、信息化、系統(tǒng)化、長遠(yuǎn)化。
3.5 從基礎(chǔ)研究走向防控實(shí)踐
男性基礎(chǔ)科學(xué)研究與衛(wèi)生防控實(shí)踐的緊密結(jié)合是當(dāng)前迫切的現(xiàn)實(shí)需求,也是檢驗(yàn)科學(xué)研究結(jié)論的重要途徑。為保護(hù)男性生殖健康,主要圍繞環(huán)境保護(hù)和人群干預(yù)兩方面開展防控實(shí)踐。在環(huán)境保護(hù)方面,環(huán)境質(zhì)量的監(jiān)測、相關(guān)排放標(biāo)準(zhǔn)的制定、環(huán)境健康風(fēng)險的評估、高危易感人群的識別等環(huán)節(jié)環(huán)環(huán)相扣、缺一不可。近年來我國在科學(xué)研究指導(dǎo)空氣污染治理和健康維護(hù)等方面取得了引人注目的成就,為其他環(huán)境因素與男性生殖健康的研究提供了可供參考的范例。在人群干預(yù)方面,高危因素的早期識別、人群防治指南的制定、個性化防治措施的開發(fā)等是防控的主要路徑。在未來的相關(guān)研究過程中,應(yīng)更加注重研究結(jié)果的轉(zhuǎn)化,特別是生殖損害風(fēng)險預(yù)警技術(shù)、靶向性防治策略及個性化治療手段的開發(fā)等,最終建立男性生殖損害的早期防治體系。
近年來,環(huán)境因素導(dǎo)致的男性生殖損害已成為公共衛(wèi)生領(lǐng)域的熱點(diǎn)之一,在損傷因素識別及損傷機(jī)制研究等方面連續(xù)取得重大突破。隨著自然與社會環(huán)境不斷變化,本領(lǐng)域?qū)⒕o跟環(huán)境變化新形勢,持續(xù)關(guān)注多種潛在環(huán)境威脅,借助基礎(chǔ)理論研究新進(jìn)展及多學(xué)科交叉融合,深入探索復(fù)雜暴露等關(guān)鍵問題,借助高質(zhì)量人群數(shù)據(jù)與實(shí)驗(yàn)室研究,推動基礎(chǔ)研究成果向衛(wèi)生防控實(shí)踐轉(zhuǎn)化。
參考文獻(xiàn)
[1]VOLLSET S E, GOREN E, YUAN C W, et al. Fertility, mortality, migration, and population scenarios for 195 countries and territories from 2017 to 2100: a forecasting analysis for the Global Burden of Disease Study[J]. Lancet, 2020, 396(10258): 1285-1306.
[2]AGARWAL A, BASKARAN S, PAREKH N, et al. Male infertility[J]. Lancet, 2021, 397(10271): 319-333.
[3]LEVINE H, J?RGENSEN N, MARTINO-ANDRADE A, et al. Temporal trends in sperm count: a systematic review and meta-regression analysis[J]. Hum Reprod Update, 2017, 23(6): 646-659.
[4]LEVINE H, J?RGENSEN N, MARTINO-ANDRADE A, et al. Temporal trends in sperm count: a systematic review and meta-regression analysis of samples collected globally in the 20th and 21st centuries[J]. Hum Reprod Update, 2022, dmac035.
[5]LV M Q, GE P, ZHANG J, et al. Temporal trends in semen concentration and count among 327 373 Chinese healthy men from 1981 to 2019: a systematic review[J]. Hum Reprod, 2021, 36(7): 1751-1775.
[6]WANG S Y, MEYER D H, SCHUMACHER B. Inheritance of paternal DNA damage by histone-mediated repair restriction[J]. Nature, 2023, 613(7943): 365-374.
[7]TIRPAK F, SLANINA T, TOMKA M, et al. Exposure to non-ionizing electromagnetic radiation of public risk prevention instruments threatens the quality of spermatozoids[J]. Zuchthygiene, 2019, 54(2): 150-159.
[8]HAVAS M. When theory and observation collide: can non-ionizing radiation cause cancer?[J]. Environ Pollut, 2017, 221: 501-505.
[9]KESARI K K, BEHARI J. Evidence for mobile phone radiation exposure effects on reproductive pattern of male rats: role of ROS[J]. Electromagn Biol Med, 2012, 31(3): 213-222.
[10]PANDEY N, GIRI S. Melatonin attenuates radiofrequency radiation (900 MHz)-induced oxidative stress, DNA damage and cell cycle arrest in germ cells of male Swiss albino mice[J]. Toxicol Ind Health, 2018, 34(5): 315-327.
[11]NAEIMI R A, TALEBPOUR AMIRI F, KHALATBARY A R, et al. Atorvastatin mitigates testicular injuries induced by ionizing radiation in mice[J]. Reprod Toxicol, 2017, 72: 115-121.
[12]JI H J, WANG D M, WU Y P, et al. Wuzi Yanzong pill, a Chinese polyherbal formula, alleviates testicular damage in mice induced by ionizing radiation[J]. BMC Complement Altern Med, 2016, 16(1): 509.
[13]KESARI K K, AGARWAL A, HENKEL R. Radiations and male fertility[J]. Reprod Biol Endocrinol, 2018, 16(1): 118.
[14]GREEN A, BARAK S, SHINE L, et al. Exposure by males to light emitted from media devices at night is linked with decline of sperm quality and correlated with sleep quality measures[J]. Chronobiol Int, 2020, 37(3): 414-424.
[15]HASSAN M H, EL-TAIEB M A, FARES N N, et al. Men with idiopathic oligoasthenoteratozoospermia exhibit lower serum and seminal plasma melatonin levels: comparative effect of night-light exposure with fertile males[J]. Exp Ther Med, 2020, 20(1): 235-242.
[16]WAN X Y, HE X M, LIU Q, et al. Frequent and mild scrotal heat stress in mice epigenetically alters glucose metabolism in the male offspring[J]. Am J Physiol Endocrinol Metab, 2020, 319(2): E291-E304.
[17]CALVERT L, GREEN M P, DE IULⅡS G N, et al. Assessment of the emerging threat posed by perfluoroalkyl and polyfluoroalkyl substances to male reproduction in humans[J]. Front Endocrinol (Lausanne), 2021, 12: 799043.
[18]HOU B L, WANG F Y, LIU T, et al. Reproductive toxicity of polystyrene microplastics: in vivo experimental study on testicular toxicity in mice[J]. J Hazard Mater, 2021, 405: 124028.
[19]JIN H B, YAN M H, PAN C, et al. Chronic exposure to polystyrene microplastics induced male reproductive toxicity and decreased testosterone levels via the LH-mediated LHR/cAMP/PKA/StAR pathway[J]. Part Fibre Toxicol, 2022, 19(1): 13.
[20]DENG Y F, YAN Z H, SHEN R Q, et al. Enhanced reproductive toxicities induced by phthalates contaminated microplastics in male mice (Mus musculus)[J]. J Hazard Mater, 2021, 406: 124644.
[21]CHEN H L, WANG Y Y, LUO J, et al. Autophagy and apoptosis mediated nano-copper-induced testicular damage[J]. Ecotoxicol Environ Saf, 2022, 229: 113039.
[22]VAN CAUWENBERGH O, SERAFINO A D, TYTGAT J, et al. Transgenerational epigenetic effects from male exposure to endocrine-disrupting compounds: a systematic review on research in mammals[J]. Clin Epigenetics, 2020, 12(1): 65.
[23]JIAN J M, CHEN D, HAN F J, et al. A short review on human exposure to and tissue distribution of per- and polyfluoroalkyl substances (PFASs)[J]. Sci Total Environ, 2018, 636: 1058-1069.
[24]JUREWICZ J, RADWAN M, WIELGOMAS B, et al. Environmental exposure to parabens and sperm chromosome disomy[J]. Int J Environ Health Res, 2017, 27(5): 332-343.
[25]INGLE M E, MíNGUEZ-ALARCóN L, CARIGNAN C C, et al. The association between urinary concentrations of phosphorous-containing flame retardant metabolites and semen parameters among men from a fertility clinic[J]. Int J Hyg Environ Health, 2018, 221(5): 809-815.
[26]HOWDESHELL K L, HOTCHKISS A K, GRAY L E. Cumulative effects of antiandrogenic chemical mixtures and their relevance to human health risk assessment[J]. Int J Hyg Environ Health, 2017, 220(2): 179-188.
[27]TIRPáK F, GREIFOVá H, LUKá? N, et al. Exogenous factors affecting the functional integrity of male reproduction[J]. Life (Basel), 2021, 11(3): 213.
[28]PEELING R, EMBREE J. Screening for sexually transmitted infection pathogens in semen samples[J]. J Can Des Maladies Infect De La Microbiol Med, 2005, 16(2): 73-76.
[29]SALAM A P, HORBY P W. The breadth of viruses in human Semen[J]. Emerg Infect Dis, 2017, 23(11): 1922-1924.
[30]GACCI M, COPPI M, BALDI E, et al. Semen impairment and occurrence of SARS-CoV-2 virus in semen after recovery from COVID-19[J]. Hum Reprod, 2021, 36(6): 1520-1529.
[31]DEJUCQ N, JéGOU B. Viruses in the mammalian male genital tract and their effects on the reproductive system[J]. Microbiol Mol Biol Rev, 2001, 65(2): 208-231.
[32]MARTORELL M, GIL-SALOM M, PéREZ-VALLéS A, et al. Presence of human papillomavirus DNA in testicular biopsies from nonobstructive azoospermic men[J]. Arch Pathol Lab Med, 2005, 129(9): 1132-1136.
[33]ROYCHOUDHURY S, DAS A, JHA N K, et al. Viral pathogenesis of SARS-CoV-2 infection and male reproductive health[J]. Open Biol, 2021, 11(1): 200347.
[34]MA X X, GUAN C H, CHEN R, et al. Pathological and molecular examinations of postmortem testis biopsies reveal SARS-CoV-2 infection in the testis and spermatogenesis damage in COVID-19 patients[J]. Cell Mol Immunol, 2021, 18(2): 487-489.
[35]SEYMEN C M. The other side of COVID-19 pandemic: effects on male fertility[J]. J Med Virol, 2021, 93(3): 1396-1402.
[36]HE Y F, WANG J, REN J L, et al. Effect of COVID-19 on male reproductive system—A systematic review[J]. Front Endocrinol (Lausanne), 2021, 12: 677701.
[37]LI H G, XIAO X Y, ZHANG J, et al. Impaired spermato-genesis in COVID-19 patients[J]. EClinicalMedicine, 2020, 28: 100604.
[38]GONZALEZ D C, NASSAU D E, KHODAMORADI K, et al. Sperm parameters before and after COVID-19 mRNA vaccination[J]. JAMA, 2021, 326(3): 273-274.
[39]XIE Y, HOU W, SONG X, et al. Ferroptosis: process and function[J]. Cell Death Differ, 2016, 23(3): 369-379.
[40]OH S J, IKEDA M, IDE T, et al. Mitochondrial event as an ultimate step in ferroptosis[J]. Cell Death Discov, 2022, 8(1): 414.
[41]KURNIAWAN A L, LEE Y C, SHIH C K, et al. Alteration in iron efflux affects male sex hormone testosterone biosynthesis in a diet-induced obese rat model[J]. Food Funct, 2019, 10(7): 4113-4123.
[42]D'HERDE K, KRYSKO D V. Ferroptosis: Oxidized PEs trigger death[J]. Nat Chem Biol, 2017, 13(1): 4-5.
[43]MOJICA-VILLEGAS M A, IZQUIERDO-VEGA J A, CHAMORRO-CEVALLOS G, et al. Protective effect of resveratrol on biomarkers of oxidative stress induced by iron/ascorbate in mouse spermatozoa[J]. Nutrients, 2014, 6(2): 489-503.
[44]ZHAO Y, ZHANG H, CUI J G, et al. Ferroptosis is critical for phthalates driving the blood-testis barrier dysfunction via targeting transferrin receptor[J]. Redox Biol, 2023, 59: 102584.
[45]MENG P, ZHANG S S, JIANG X J, et al. Arsenite induces testicular oxidative stress in vivo and in vitro leading to ferroptosis[J]. Ecotoxicol Environ Saf, 2020, 194: 110360.
[46]TAKAHASHI J S. Transcriptional architecture of the mammalian circadian clock[J]. Nat Rev Genet, 2017, 18(3): 164-179.
[47]LIU K, HOU G Z, WANG X G, et al. Adverse effects of circadian desynchrony on the male reproductive system: an epidemiological and experimental study[J]. Hum Reprod, 2020, 35(7): 1515-1528.
[48]LI T, BAI Y J, JIANG Y T, et al. The potential impacts of circadian rhythm disturbances on male fertility[J]. Front Endocrinol (Lausanne), 2022, 13: 1001316.
[49]LI C M, ZHANG L L, MA T T, et al. Bisphenol A attenuates testosterone production in Leydig cells via the inhibition of NR1D1 signaling[J]. Chemosphere, 2021, 263: 128020.
[50]RUSSART K L G, NELSON R J. Light at night as an environmental endocrine disruptor[J]. Physiol Behav, 2018, 190: 82-89.
[51]COPE K L, SCHOOK M W, BENARD M F. Exposure to artificial light at night during the larval stage has delayed effects on juvenile corticosterone concentration in American toads, Anaxyrus americanus[J]. Gen Comp Endocrinol, 2020, 295: 113508.
[52]BRVNING A, KLOAS W, PREUER T, et al. Influence of artificially induced light pollution on the hormone system of two common fish species, perch and roach, in a rural habitat[J]. Conserv Physiol, 2018, 6(1): coy016.
[53]PAOLI A, TINSLEY G, BIANCO A, et al. The influence of meal frequency and timing on health in humans: the role of fasting[J]. Nutrients, 2019, 11(4): 719.
[54]SEKARAN S, JAGADEESAN A. In utero exposure to phthalate downregulates critical genes in Leydig cells of F1 male progeny[J]. J Cell Biochem, 2015, 116(7): 1466-1477.
[55]ZHANG Z H, WANG J K, SHI F Q, et al. Genome-wide alternation and effect of DNA methylation in the impairments of steroidogenesis and spermatogenesis after PM2.5 exposure[J]. Environ Int, 2022, 169: 107544.
[56]CHENG Y T, TANG Q Q, LU Y W, et al. Semen quality and sperm DNA methylation in relation to long-term exposure to air pollution in fertile men: a cross-sectional study[J]. Environ Pollut, 2022, 300: 118994.
[57]MA X, FAN Y, XIAO W W, et al. Glufosinate-ammonium induced aberrant histone modifications in mouse sperm are concordant with transcriptome in preimplantation embryos[J]. Front Physiol, 2021, 12: 819856.
[58]WADDELL A R, HUANG H J, LIAO D Q. CBP/p300: critical Co-activators for nuclear steroid hormone receptors and emerging therapeutic targets in prostate and breast cancers[J]. Cancers (Basel), 2021, 13(12): 2872.
[59]OSADA S, NISHIKAWA J, NAKANISHI T, et al. Some organotin compounds enhance histone acetyltransferase activity[J]. Toxicol Lett, 2005, 155(2): 329-335.
[60]RIBAS-MAYNOU J, NGUYEN H, WU H W, et al. Functional aspects of sperm chromatin organization[J]. Results Probl Cell Differ, 2022, 70: 295-311.
[61]LIU J H, LI X Y, ZHOU G Q, et al. Silica nanoparticles induce spermatogenesis disorders via L3MBTL2-DNA damage-p53 apoptosis and RNF8-ubH2A/ubH2B pathway in mice[J]. Environ Pollut, 2020, 265: 114974.
[62]OLESZCZUK K, AUGUSTINSSON L, BAYAT N, et al. Prevalence of high DNA fragmentation index in male partners of unexplained infertile couples[J]. Andrology, 2013, 1(3): 357-360.
[63]WANG Y, XIE Z G. Exploring the role of gut microbiome in male reproduction[J]. Andrology, 2022, 10(3): 441-450.
[64]ZHANG T, SUN P, GENG Q, et al. Disrupted spermatogenesis in a metabolic syndrome model: the role of vitamin A metabolism in the gut-testis axis[J]. Gut, 2022, 71(1): 78-87.
[65]AL-ASMAKH M, STUKENBORG J B, REDA A, et al. The gut microbiota and developmental programming of the testis in mice[J]. PLoS One, 2014, 9(8): e103809.
[66]HAMPL R, STáRKA L. Endocrine disruptors and gut microbiome interactions[J]. Physiol Res, 2020, 69(Suppl 2): S211-S223.
[67]ZHANG T T, ZHOU X, ZHANG X, et al. Gut microbiota may contribute to the postnatal male reproductive abnormalities induced by prenatal dibutyl phthalate exposure[J]. Chemosphere, 2022, 287(Pt 1): 132046.
[68]SOUBRY A. POHaD: why we should study future fathers[J]. Environ Epigenet, 2018, 4(2): dvy007.
[69]SCIORIO R, MESEGUER M. Focus on time-lapse analysis: blastocyst collapse and morphometric assessment as new features of embryo viability[J]. Reproductive Biomed Online, 2021, 43(5): 821-832.
[70]BARRATT C L R, DE JONGE C J, ANDERSON R A, et al. A global approach to addressing the policy, research and social challenges of male reproductive health[J]. Hum Reprod Open, 2021, 2021(1): hoab009.
[71]PRISKORN L, NORDKAP L, BANG A K, et al. Average sperm count remains unchanged despite reduction in maternal smoking: results from a large cross-sectional study with annual investigations over 21 years[J]. Hum Reprod, 2018, 33(6): 998-1008.
[72]VAN DONKELAAR A, HAMMER M S, BINDLE L, et al. Monthly global estimates of fine particulate matter and their uncertainty[J]. Environ Sci Technol, 2021, 55(22): 15287-15300.
[73]JOHNSON J S, SPAKOWICZ D J, HONG B Y, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis[J]. Nat Commun, 2019, 10(1): 5029.
[74]SHI Y S, WANG H C, ZHU Z B, et al. Association between exposure to phenols and parabens and cognitive function in older adults in the United States: a cross-sectional study[J]. Sci Total Environ, 2023, 858(Pt 3): 160129.
[75]CIALLELLA H L, ZHU H. Advancing computational toxicology in the big data era by artificial intelligence: data-driven and mechanism-driven modeling for chemical toxicity[J]. Chem Res Toxicol, 2019, 32(4): 536-547.
[76]LUO D, LIU W Y, WU W X, et al. Trimester-specific effects of maternal exposure to organophosphate flame retardants on offspring size at birth: a prospective cohort study in China[J]. J Hazard Mater, 2021, 406: 124754.
相關(guān)知識
Analysis of body composition and influencing factors of lean non
The influence of lifestyle and psychological factors on obesity in an occupational population
Prevalence and the correlation factors analysis of maternal morbidity for postpartum women
Research progress of correlation between sleep during pregnancy and offspring birth weight
Stress and Distress During Pregnancy: How to Protect Both Mother and Child
人體微塑料污染特征及健康風(fēng)險研究進(jìn)展
Current Status and Prospects of Soil Ecological Environment Health Monitoring Technology
A study on the influencing factors and relative contribution of family on children's health: From the perspective of household production of health
Ecological security dynamic assessment and obstacle factors analysis in Jiuzhaigou National Nature Reserve
Analysis of Spatial and Temporal Changes in Ecosystem Health and Its Drivers in Southwest Guangxi in the Last 20 Years
網(wǎng)址: Progress and prospect of environmental factors and male reproductive damage http://www.u1s5d6.cn/newsview530722.html
推薦資訊
- 1發(fā)朋友圈對老公徹底失望的心情 12775
- 2BMI體重指數(shù)計算公式是什么 11235
- 3補(bǔ)腎吃什么 補(bǔ)腎最佳食物推薦 11199
- 4性生活姿勢有哪些 盤點(diǎn)夫妻性 10425
- 5BMI正常值范圍一般是多少? 10137
- 6在線基礎(chǔ)代謝率(BMR)計算 9652
- 7一邊做飯一邊躁狂怎么辦 9138
- 8從出汗看健康 出汗透露你的健 9063
- 9早上怎么喝水最健康? 8613
- 10五大原因危害女性健康 如何保 7826