首頁 資訊 飼料能量密度和投喂水平對(duì)吉富羅非魚生長和健康的影響

飼料能量密度和投喂水平對(duì)吉富羅非魚生長和健康的影響

來源:泰然健康網(wǎng) 時(shí)間:2024年12月29日 01:30

摘要: 為探討飼料能量密度(DED)和投喂水平(DFR)對(duì)魚類生長和健康的影響, 本試驗(yàn)采用2×2雙因子設(shè)計(jì), 設(shè)置2個(gè)DED(對(duì)照組和高糖高脂組)和2個(gè)DFR(1倍和1.2倍表觀飽食投喂對(duì)照組飼料的能量水平), 研究DED和DFR對(duì)吉富羅非魚[Oreochromis niloticus, (14.59±0.06) g]生長性能、飼料利用、體成分、血液學(xué)指標(biāo)和抵抗無乳鏈球菌(Streptococcus agalactiae)感染能力的影響。試驗(yàn)以40d為1個(gè)周期, 持續(xù)2個(gè)周期(周期Ⅰ和周期Ⅱ)。研究結(jié)果發(fā)現(xiàn), DED和DFR均未影響試驗(yàn)魚的飼料效率(P>0.05)。DED未影響試驗(yàn)魚的生長(P>0.05)。高DFR提升了試驗(yàn)魚的末重(P<0.05), 但降低了周期Ⅱ的蛋白質(zhì)沉積率(P<0.05)。DED和DFR均未影響試驗(yàn)魚的肥滿度(P>0.05)。在周期Ⅰ, 高DED僅增加了試驗(yàn)魚的臟體比(P<0.05); 但在周期Ⅱ, DED和DFR對(duì)試驗(yàn)魚的腸體比和臟體比也產(chǎn)生了顯著影響(P<0.05)。在周期Ⅰ, 高DED引起了去內(nèi)臟全魚、內(nèi)臟團(tuán)粗脂肪含量顯著升高(P<0.05), 高DFR引起了肝臟粗脂肪含量顯著升高(P<0.05); 而在周期Ⅱ, 高DED和DFR均引起了去內(nèi)臟全魚、肝臟和肌肉粗脂肪含量顯著升高(P<0.05)。在試驗(yàn)期內(nèi), 高DED和DFR顯著升高了試驗(yàn)魚的血清甘油三酯、丙二醛含量(P<0.05)和周期Ⅰ的血細(xì)胞比容(P<0.05), 降低了周期Ⅱ的白細(xì)胞計(jì)數(shù)(P<0.05); 高DED升高了試驗(yàn)魚的血清堿性磷酸酶活性和周期Ⅱ的血清膽固醇水平(P<0.05), 降低了周期Ⅰ的過氧化氫酶和谷胱甘肽過氧化物酶活性(P<0.05); 高DFR顯著升高周期Ⅰ試驗(yàn)魚的血糖水平(P<0.05)。無乳鏈球菌感染試驗(yàn)發(fā)現(xiàn), 在周期Ⅰ, DED和DFR對(duì)試驗(yàn)魚的成活率無顯著影響(P>0.05); 可在周期Ⅱ, 高DFR造成試驗(yàn)魚成活率顯著降低(P<0.05)。以上結(jié)果表明, 高DFR能提高羅非魚的生長速度, 但是會(huì)增加魚體的脂肪沉積, 降低魚體健康水平; 高DED更易于魚體脂肪沉積, 不利于魚體健康。

關(guān)鍵詞: 飼料能量密度  /  投喂量  /  羅非魚  /  生長  /  體成分  /  血液學(xué)  /  抗病力  

Abstract: To investigate the effects of dietary energy density (DED) and dietary feed ration (DFR) on fish growth and health, a 2×2 factorial experiment was designed, including 2 DED (control diet and high carbohydrate and fat diet) and 2 DFR (1 and 1.2 times energy level of fish fed to control diet apparent satiation). To evaluate the effects of DED and DFR on growth performance, feed utilization, body composition, hematological indices and resistant to Streptococcus agalactiae infection of genetically improved farmed tilapia, Oreochromis niloticus (14.59±0.06) g, the study set 40d as a cycle for 2 cycles (period Ⅰ and Ⅱ). The results showed that DED and DFR did not affect the feed efficiency (P>0.05), and DED did not affect the fish growth performance (P>0.05). High DFR improved the final mean weight (P<0.05), but reduced protein retention during period Ⅱ (P<0.05). DED and DFR had no impact on the conditional factor (P>0.05); in period Ⅰ, high DED only induced the viscerasomatic index (P<0.05), but in period Ⅱ, DED and DFR had significant effects on intestinal-somatic index and viscerasomatic index (P<0.05). High DED increased crude lipid content in the eviscerated whole fish and visceral mass (P<0.05); in period Ⅰ, high DFR enhanced crude lipid content in the liver (P<0.05), and in period Ⅱ, high DED and DFR induced crude lipid content in the eviscerated whole fish, liver, and muscle (P<0.05). High DED and DFR increased in the serum triglycerides and malondialdehyde content (P<0.05), and hematocrit in period Ⅰ(P<0.05), but it decreased the white cell count in period Ⅱ (P<0.05); high DED increased the serum alkaline phosphatase activity, and serum cholesterol (period Ⅱ) (P<0.05), but decreased the catalase and glutathione peroxidase activity (period Ⅰ) (P<0.05); high DFR increased the serum glucose levels (P<0.05). After infection with S. Agalactiae, DED and DFR did not affect the survival rate in period Ⅰ (P>0.05); however, high DFR decreased the survival rate in period Ⅱ (P<0.05). In conclusion, these results suggested that high DFR could improve the growth rate of tilapia, increase the fat deposition and reduce the health level of fish, and DED is more prone to fat deposition to impact fish health.

圖  1   無乳鏈球菌攻毒中試驗(yàn)魚的累計(jì)成活率

A. 周期Ⅰ結(jié)束后攻毒結(jié)果; B. 周期Ⅱ結(jié)束后攻毒結(jié)果; 同一時(shí)間點(diǎn)具不同小寫字母表示差異顯著(P<0.05)

Figure  1.   Cumulative survival percentage of GIFT challenged by S. agalactiae

A. challenge results after period Ⅰ; B. challenge results after period Ⅱ. Different lowercase letters at the same time point indicate significant differences (P<0.05)

表  1   試驗(yàn)飼料配方和營養(yǎng)成分

Table  1   Formulation and composition of the experimental diets (%)

原料成分
Ingredient飼料Diet對(duì)照Control高糖高脂High carbohydrate-high lipid 酪蛋白Casein31.0031.00明膠Gelatin 7.00 7.00糊精Dextrin32.0042.00微晶纖維素Microcrystalline cellulose16.65 0.65大豆油Soybean oil 3.00 6.00玉米油Corn oil 3.00 6.00維生素預(yù)混料Vitamin premix* 1.00 1.00礦物質(zhì)預(yù)混料Mineral premix* 1.00 1.00磷酸二氫鈣Monocalcium phosphate 2.00 2.00氯化膽堿Choline chloride 0.25 0.25?;撬酺aurine 1.00 1.00沸石粉Zeolite powder 1.90 1.90二氧化鈦Titanium dioxide 0.20 0.20成分分析Proximate composition (dry matter, %)粗蛋白Crude protein34.2934.69粗脂肪Crude lipid 6.2612.63灰分Ash 4.61 4.64總能Total energy (kJ/g)21.9423.92可消化能Digestible energy (kJ/g)17.2620.76 注: *維生素預(yù)混料由下列成分組成(g/kg預(yù)混料): 硫胺素鹽酸鹽. 5; 核黃素. 5; 泛酸鈣. 10; D-生物素. 0.003; 鹽酸吡哆醇. 4; 葉酸. 1.5; 肌醇. 200; L-維生素C-2-磷酸鎂. 3.95; 煙酸. 6.05; α-維生素E醋酸酯. 50; 維生素K3. 4; 視黃醇乙酸酯. 0.4; 維生素D3. 160000 IU; 添加微晶纖維素至1 kg; *礦物質(zhì)預(yù)混料由下列成分組成(g/kg 預(yù)混料): 磷酸二氫鈣. 135; 乳酸鈣. 327; 硫酸亞鐵. 2.125; 硫酸鎂. 137; 磷酸二氫鈉. 87.2; 氯化鈉. 43.5; 氯化鋁. 0.15; 碘酸鉀. 0.125; 氯化鉀. 75; 氯化銅. 0.1; 硫酸錳. 0.8; 氯化鈷. l; 硫酸鋅. 3; 添加微晶纖維素至1 kgNote: * Vitamin premix consists of the following ingredients (g/kg premix): thiamine hydrochloride. 5; riboflavin. 5; calcium pantothenate. 10; d-biotin. 0.003; pyridoxine hydrochloride. 4; folic acid. 1.5; inositol. 200; magnesium L-vitamin C-2-phosphate. 3.95; niacin. 6.05; vitamin E acetate. 50; vitamin K3. 4; retinol acetate. 0.4; vitamin D3. 160000 IU; add microcrystalline cellulose to 1 kg; *Mineral premix consists of the following ingredients (g/kg premix): calcium dihydrogen phosphate. 135; calcium lactate. 327; ferrous sulfate. 2.125; magnesium sulfate. 137; sodium dihydrogen phosphate. 87.2; sodium chloride. 43.5; aluminium chloride. 0.15; potassium iodate. 0.125; potassium chloride. 75; copper chloride. 0.1; manganese sulfate. 0.8; cobalt chloride. 1; zinc sulfate. 3; add microcrystalline cellulose to 1 kg

表  2   飼料能量密度和投喂水平對(duì)試驗(yàn)魚生長和飼料利用效率的影響

Table  2   Effects of dietary energy density and feed ration on grow performance and feed utilization of GIFT (n=3)

指標(biāo)Index組別Group雙因素方差分析Two way ANOVACDCHCLDHCL能量密度
Energy
density投喂量
Feed
ration交互作用
Interaction 周期Ⅰ
Period Ⅰ初始平均體重Wi (g)14.77±0.0514.51±0.1414.66±0.0914.43±0.07末平均體重Wf (g)40.84±1.20a46.39±0.99b40.64±1.94a47.82±1.19b0.5970.0000.490成活率SR (%)98.99±1.1196.67±3.3396.11±0.5695.56±1.110.3270.4770.667特定生長率SGR (%/d)3.39±0.10a3.87±0.10b3.40±0.11a3.99±0.08b0.5330.0010.595增重率WGR (%)176.56±8.22a219.98±9.38b177.43±9.36a231.49±8.05b0.5000.0010.561飼料效率FE1.02±0.031.01±0.051.02±0.061.08±0.050.5290.5940.436蛋白質(zhì)沉積率PRE (%)49.49±1.1649.27±3.0449.80±3.2151.53±1.420.6050.7600.695周期Ⅱ
Period Ⅱ初始平均體重Wi (g)62.41±0.73a73.25±0.51b62.57±0.62a73.29±1.43b0.9160.0000.949末平均體重Wf (g)121.10±1.82a141.68±2.19b121.12±3.37a135.21±2.12b0.2240.0000.221成活率SR (%)100100100100特定生長率SGR (%)1.66±0.021.65±0.041.65±0.081.53±0.090.9710.4790.893增重率WGR (%)84.95±5.3690.88±6.1693.39±6.77104.46±6.490.3720.3640.427飼料效率FE0.80±0.020.78±0.030.81±0.050.77±0.040.3970.3720.433蛋白質(zhì)沉積率PRE (%)35.97±3.04b27.78±0.38a34.79±1.03ab31.87±1.74ab0.5230.0340.261 注: 表格中同行平均數(shù)上標(biāo)不同表示差異顯著(P<0.05); 下同Note: The mean values in the same row with different letters are significantly different (P<0.05). The same applies below

表  3   飼料能量密度和投喂水平對(duì)試驗(yàn)魚形體指標(biāo)的影響

Table  3   Effects of dietary energy density and feed ration on physical parameters of GIFT (n=3)

指標(biāo)Index組別Group雙因素方差分析Two way ANOVACDCHCLDHCL能量密度
Energy density投喂水平
Feed ration交互作用
Interaction 周期Ⅰ
Period Ⅰ腸體比ISI7.41±0.318.40±0.477.54±0.297.69±0.400.4610.1650.299肥滿度CF (g/cm3)3.43±0.013.51±0.053.58±0.083.58±0.080.1050.5200.530臟體比VSI 9.49±0.40a9.66±0.16a10.14±0.19ab10.89±0.08b0.0040.0920.258肝體比HSI 1.94±0.211.84±0.031.84±0.251.86±0.030.8150.8010.711周期Ⅱ
Period Ⅱ腸體比ISI7.89±0.26a9.60±0.21b7.91±0.43a8.20±0.27ab0.0380.0290.100肥滿度CF (g/cm3)4.34±0.114.30±0.254.44±0.134.38±0.130.9370.7520.964臟體比VSI10.33±0.19a13.68±0.14c12.05±0.35b15.08±0.26d0.0000.0000.543肝體比HSI1.80±0.18a3.69±0.09b2.46±0.30a3.95±0.37b0.1120.0000.471

表  4   飼料能量密度和投喂水平對(duì)周期Ⅰ試驗(yàn)魚體成分的影響 (n=3, %濕重)

Table  4   Effects of dietary energy density and feed ration on body composition of GIFT in period Ⅰ (n=3, % wet weight)

指標(biāo)Index組別Group雙因素方差分析Two way ANOVACDCHCLDHCL能量密度
Energy density投喂量
Feed ration交互作用
Interaction 去內(nèi)臟全魚
The eviscerated whole fish水分Moisture72.36±0.19b72.12±0.50b70.06±0.28a70.33±0.22a0.0000.9630.438粗脂肪Crude lipid6.62±0.35a6.44±0.54a8.43±0.32b8.66±0.10b0.0010.9560.583粗蛋白Crude protein16.24±0.1416.40±0.1516.56±0.2516.35±0.380.5960.9320.476灰分Ash4.35±0.11ab4.53±0.17b4.14±0.11ab3.98±0.07a0.0140.9070.199肝臟Liver水分Moisture68.70±0.7068.61±0.5366.79±0.5865.82±0.780.0090.4590.531粗脂肪Crude lipid9.98±0.9113.74±0.0711.94±0.3713.47±1.400.3510.0150.229粗蛋白Crude protein12.93±0.4712.76±0.7011.78±0.8312.13±0.360.1910.8860.684內(nèi)臟團(tuán)
Visceral
mass*水分Moisture74.26±1.8874.17±2.7168.07±2.5466.05±2.410.0180.6730.700粗脂肪Crude lipid8.87±0.06a9.08±0.50a17.82±1.57b19.84±1.88b0.0000.3980.493粗蛋白Crude protein8.36±0.178.28±0.358.08±0.218.56±0.300.9990.4710.320肌肉Muscle水分Moisture77.66±0.3177.09±0.4577.05±0.3276.69±0.590.2770.3220.814粗脂肪Crude lipid0.94±0.101.06±0.311.13±0.111.19±0.180.5010.5970.818粗蛋白Crude protein17.48±0.2017.72±0.2118.20±0.6918.44±0.510.1540.6200.999 注: *內(nèi)臟團(tuán)不包含肝臟; 下同Note: *Visceral masses do not contain the liver. The same applied below

表  5   飼料能量密度和投喂水平對(duì)周期Ⅱ試驗(yàn)魚體成分的影響 (n=3, %濕重)

Table  5   Effects of dietary energy density and feed ration on body composition of GIFT in period Ⅱ (n=3, % wet weight)

指標(biāo)Index組別Group雙因素方差分析Two way ANOVACDCHCLDHCL能量密度
Energy density投喂量
Feed ration交互作用
Interaction 去內(nèi)臟全魚
The
eviscerated
whole fish水分Moisture69.04±0.20c67.69±0.55b67.96±0.09b66.13±0.19a0.0030.0010.469粗脂肪Crude lipid 8.64±0.16a9.99±0.18a11.49±0.24b12.00±0.40b0.0000.0080.148粗蛋白Crude protein17.55±0.3516.69±0.5816.77±0.2116.72±0.460.4610.3140.366灰分Ash 4.57±0.094.31±0.014.63±0.094.58±0.210.3170.2440.411肝臟Liver水分Moisture69.36±2.9267.47±0.7064.78±0.0265.02±1.260.2280.6260.531粗脂肪Crude lipid13.97±0.27a15.11±0.26a14.93±0.57a18.51±0.13b0.0000.0000.008粗蛋白Crude protein14.84±0.6813.94±0.8913.26±0.7811.78±0.700.1070.1590.717內(nèi)臟團(tuán)
Visceral
mass*水分Moisture65.75±4.43a67.54±2.54a47.04±3.12b43.36±2.87b0.0010.7830.434粗脂肪Crude lipid19.05±0.64a25.11±1.55b20.36±0.17a27.64±1.24b0.1310.0000.606粗蛋白Crude protein 6.99±0.436.26±0.235.32±0.385.78±0.450.0710.7300.157肌肉Muscle水分Moisture77.38±0.3777.13±0.2776.87±0.2776.20±0.150.0770.1390.468粗脂肪Crude lipid 0.77±0.18a1.63±0.15b1.40±0.07b1.82±0.07b0.0130.0010.126粗蛋白Crude protein18.46±0.35a18.21±0.05a19.73±0.37b20.66±0.40b0.0020.3270.106

表  6   飼料能量密度和投喂水平對(duì)試驗(yàn)魚血液生理指標(biāo)的影響

Table  6   Effects of dietary energy density and feed ration on blood physiological indices of GIFT (n=3)

指標(biāo)Index組別Group雙因素方差分析Two way ANOVACDCHCLDHCL能量密度
Energy density投喂量
Feed ration交互作用
Interaction 周期Ⅰ
Period Ⅰ血紅蛋白HB (g/L)187.33±18.67236.67±5.46231.33±8.11230.67±3.710.1140.2090.558紅細(xì)胞數(shù)RBC (×1012)14.00±3.9415.112±1.6719.05±2.8214.82±1.560.4010.1290.627白細(xì)胞數(shù)WBC (×1010)23.50±2.0214.33±1.4522.50±3.3319.33±12.110.7630.4260.189血細(xì)胞比容HCT (%)37.56±0.4939.89±0.9846.02±2.3347.22±3.500.0070.0120.058周期Ⅱ
Period Ⅱ血紅蛋白HB (g/L)179.67±13.72188.33±13.86182.67±5.46180.33±2.030.9270.7640.604紅細(xì)胞數(shù)RBC (×1012)14.38±1.2311.27±3.5011.43±0.8017.35±1.850.2150.5260.065白細(xì)胞數(shù)WBC (×1010)51.00±4.36b42.67±5.83b49.00±0.76b16.50±1.76a0.0060.0010.012血細(xì)胞比容HCT (%)38.26±2.5132.16±0.3838.09±4.4431.12±1.300.3740.2170.361

表  7   飼料能量密度和投喂水平對(duì)周期Ⅰ試驗(yàn)魚血液生化指標(biāo)的影響

Table  7   Effects of dietary energy density and feed ration on blood biochemical indices of GIFT in period Ⅰ (n=3)

指標(biāo)Index組別Group雙因素方差分析Two way ANOVACDCHCLDHCL能量密度
Energy density投喂量
Feed ration交互作用
Interaction 谷草轉(zhuǎn)氨酶AST (U/L)170.33±5.55161.33±2.33171.00±10.79179.33±6.060.2120.9630.243谷丙轉(zhuǎn)氨酶ALT (U/L)54.67±4.1054.00±4.3657.00±4.3658.67±3.920.4280.9080.788堿性磷酸酶ALP (U/L)30.33±1.4534.00±1.5342.00±3.5141.67±3.840.0090.5690.497乳酸脫氫酶LD (U/L)7.00±1.53a14.67±1.33b17.33±0.33b17.00±1.00b0.0010.0120.008甘油三酯TGK (mmol/L)4.03±0.24a5.44±0.35bc4.82±0.08b5.77±0.10c0.0360.0010.330膽固醇TCHO (mmol/L)4.62±0.245.17±0.344.92±0.325.55±0.030.2380.0560.889高密度脂蛋白膽固醇HDLC (mmol/L)1.33±0.091.40±0.091.43±0.181.55±0.050.3060.4030.850低密度脂蛋白膽固醇LDLC (mmol/L)0.58±0.061.16±0.370.91±0.091.15±0.070.4310.0680.414白蛋白ALB (g/L)10.33±0.3310.33±0.3310.00±0.5811.00±0.580.7330.2090.558總蛋白TP (g/L)40.33±1.2041.67±0.3338.00±3.2139.50±1.230.2910.1290.627尿素氮BUN (mmol/L)0.56±0.040.68±0.040.69±0.070.53±0.070.8870.4260.189血糖GLU (mmol/L)7.84±0.878.11±0.497.44±0.788.57±0.220.9680.0120.058

表  8   飼料能量密度和投喂水平對(duì)周期Ⅱ試驗(yàn)魚血清生化指標(biāo)的影響

Table  8   Effects of dietary energy density and feed ration on serum biochemical indices of GIFT in period Ⅱ (n=3)

指標(biāo)Index組別Group雙因素方差分析Two way ANOVACDCHCLDHCL能量密度
Energy density投喂量
Feed ration交互作用
Interaction 谷草轉(zhuǎn)氨酶AST (U/L)76.67±11.62102.67±4.6794.00±5.0393.33±2.400.1320.1020.088谷丙轉(zhuǎn)氨酶ALT (U/L)59.33±6.9651.00±5.2042.67±5.2144.00±5.770.2390.5650.431堿性磷酸酶ALP (U/L)26.67±3.7127.33±2.4036.00±6.0043.33±1.330.0430.3220.404乳酸脫氫酶LD (U/L)212.00±14.47a452.00±26.86b428.00±41.00b455.33±26.39b0.0010.0020.006甘油三酯TGK (mmol/L)2.91±0.49a4.65±0.22b5.49±0.39b6.76±0.04c0.0000.0020.498膽固醇TCHO (mmol/L)5.03±0.20a5.50±0.23a8.12±1.01b7.73±0.62b0.0160.9500.500高密度脂蛋白膽固醇HDLC (mmol/L)2.71±0.192.39±0.172.32±0.172.58±0.170.4290.8550.136低密度脂蛋白膽固醇LDLC (mmol/L)2.60±0.182.86±0.243.37±0.253.67±0.280.0520.2760.926白蛋白ALB (g/L)12.67±0.67b10.00±0.00a11.33±0.67ab12.67±0.67b0.0320.2820.009總蛋白TP (g/L)54.67±2.4052.00±6.4356.67±3.7163.33±1.330.2880.6270.272尿素氮BUN (mmol/L)1.76±0.171.47±0.142.03±0.171.78±0.080.1250.0940.890血糖GLU (mmol/L)4.15±0.50a4.38±0.09a5.95±0.41ab6.91±0.63b0.0080.2250.445

表  9   飼料能量密度和投喂水平對(duì)試驗(yàn)魚血清抗氧化指標(biāo)的影響

Table  9   Effects of dietary energy density and feed ration on serum antioxidant indices of GIFT (n=3)

指標(biāo)Index組別 Group雙因素方差分析Two way ANOVACDCHCLDHCL能量密度
Energy density投喂量
Feed ration交互作用
Interaction 周期Ⅰ
Period ⅠSOD (U/mL)47.93±0.9551.81±7.9244.91±4.7555.08±4.410.9810.0530.048CAT (U/mL)148.43±22.48b156.87±6.48b84.01±5.49a51.91±14.78a0.0000.3640.652GSH-Px (U/mL)6.95±0.87b3.27±0.65a3.45±0.68a2.76±0.43a0.0180.4400.802周期Ⅱ
Period ⅡSOD (U/mL)47.38±5.1441.43±1.3646.32±5.8643.76±4.510.7950.3770.720GSH-Px (U/mL)18.89±4.6011.91±0.8315.62±0.4926.32±4.330.0650.6080.026CAT (U/mL)22.76±1.4920.83±2.4726.12±3.5318.86±2.610.3150.1180.339TAOC (U/mL)6.49±0.843.51±0.543.99±0.734.80±0.680.0730.1630.028MDA (nmol/mL)9.37±1.24a18.19±1.28b14.94±1.00b18.66±1.59b0.0030.0010.084 注: SOD. 超氧化物歧化酶; CAT. 過氧化氫酶; GSH-Px. 谷胱甘肽過氧化物酶; TAOC. 總抗氧化能力; MDA. 丙二醛; 表格中同行平均數(shù)上標(biāo)不同表示差異顯著(P<0.05)Note: SOD. superoxide dismutase; CAT. catalase; GSH-Px. glutathione peroxidase; TAOC. Total antioxidant capacity; MDA. malondialdehyde. The mean values in the same row with different letters are significantly different (P<0.05) [1] 劉作華, 楊飛云, 孔路軍, 等. 日糧能量水平對(duì)生長育肥豬肌內(nèi)脂肪含量以及脂肪酸合成酶和激素敏感脂酶mRNA表達(dá)的影響 [J]. 畜牧獸醫(yī)學(xué)報(bào), 2007, 38(9): 934-941. doi: 10.3321/j.issn:0366-6964.2007.09.009

Liu Z H, Yang F Y, Kong L J, et al. Efects of dietary energy level on the content of intramuscular fat and mrna expression for fatty acid synthase and hormone-sensitive lipase in growing-finishing pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2007, 38(9): 934-941. doi: 10.3321/j.issn:0366-6964.2007.09.009

[2]

Fuentes E, Fuentes F, Vilahur G, et al. Mechanisms of chronic state of inflammation as mediators that link obese adipose tissue and metabolic syndrome [J]. Mediators of Inflammation, 2013(2): 136584.

[3] 徐成斌. 代謝綜合征 [J]. 國際內(nèi)分泌代謝雜志, 2005, 25(1): 3-6. doi: 10.3760/cma.j.issn.1673-4157.2005.01.002

Xu C B. Metabolic syndrome [J]. Section of Endocrinology Foreign Medical Sciences, 2005, 25(1): 3-6. doi: 10.3760/cma.j.issn.1673-4157.2005.01.002

[4]

Stolarczyk E. Adipose tissue inflammation in obesity: a metabolic or immune response [J]? Current Opinion in Pharmacology, 2017(37): 35-40.

[5]

Nieman D C, Henson D A, Nehlsen-Cannarella S L, et al. Influence of obesity on immune function [J]. Journal of the American Dietetic Association, 1999, 99(3): 294-299. doi: 10.1016/S0002-8223(99)00077-2

[6]

Giovanni D P, Franco S. Obesity as a major risk factor for cancer [J]. Journal of Obesity, 2013(13): 291546.

[7] 杜震宇. 養(yǎng)殖魚類脂肪肝成因及相關(guān)思考 [J]. 水產(chǎn)學(xué)報(bào), 2014, 38(9): 1628-1638.

Du Z Y. Causes of fatty liver in farmed fish: a review and new perspectives [J]. Journal of Fisheries of China, 2014, 38(9): 1628-1638.

[8]

National Research Council. Nutrient Requirements of Fish and Shrimp [M]. Washington, DC: The National Academy Press, 2011: 36, 38.

[9]

Xie D, Yang L, Yu R, et al. Effects of dietary carbohydrate and lipid levels on growth and hepatic lipid deposition of juvenile tilapia, Oreochromis niloticus [J]. Aquaculture, 2017, 479(1): 696-703.

[10]

Alcorn S W, Pascho R J, Murray A L, et al. Effects of ration level on immune functions in chinook salmon (Oncorhynchus tshawytscha) [J]. Aquaculture, 2003, 217(1): 529-545.

[11]

Li X F, Xu C, Tian H Y, et al. Feeding rates affect stress and non-specific immune responses of juvenile blunt snout bream Megalobrama amblycephala subjected to hypoxia [J]. Fish & Shellfish Immunology, 2016, 49(Supplement C): 298-305.

[12]

Lin Y H, Shiau S Y. Dietary lipid requirement of grouper, Epinephelus malabaricus, and effects on immune responses [J]. Aquaculture, 2003, 225(1): 243-250.

[13]

Torfi Mozanzadeh M, Yavari V, Marammazi J G, et al. Optimal dietary carbohydrate-to-lipid ratios for silvery-black porgy (Sparidentex hasta) juveniles [J]. Aquaculture Nutrition, 2017, 23(3): 470-483. doi: 10.1111/anu.12415

[14]

Feng L, Ni P J, Jiang W D, et al. Decreased enteritis resistance ability by dietary low or excess levels of lipids through impairing the intestinal physical and immune barriers function of young grass carp (Ctenopharyngodon idella) [J]. Fish & Shellfish Immunology, 2017, 67(Supplement C): 493-512.

[15]

Wu C, Ye J, Gao J E, et al. The effects of dietary carbohydrate on the growth, antioxidant capacities, innate immune responses and pathogen resistance of juvenile Black carp Mylopharyngodon piceus [J]. Fish & Shellfish Immunology, 2016, 49(Supplement C): 132-142.

[16]

Wang M, Lu M. Tilapia polyculture: a global review [J]. Aquaculture Research, 2016, 47(8): 2363-2374. doi: 10.1111/are.12708

[17]

Yuan Y, Yuan Y, Dai Y, et al. Technical efficiency of different farm sizes for tilapia farming in China [J]. Aquaculture Research, 2020, 51(1): 307-315. doi: 10.1111/are.14376

[18]

Ng W K, Romano N. A review of the nutrition and feeding management of farmed tilapia throughout the culture cycle [J]. Reviews in Aquaculture, 2013, 5(4): 220-254. doi: 10.1111/raq.12014

[19]

Richter H, Lückst?dt C, Focken U, et al. Evacuation of pelleted feed and the suitability of titanium (Ⅳ) oxide as a feed marker for gut kinetics in Nile tilapia [J]. Journal of Fish Biology, 2003, 63(5): 1080-1099. doi: 10.1046/j.1095-8649.2003.00225.x

[20]

Zhu C, Yu L, Liu W, et al. Dietary supplementation with Bacillus subtilis LT3-1 enhance the growth, immunity and disease resistance against Streptococcus agalactiae infection in genetically improved farmed tilapia, Oreochromis niloticus [J]. Aquaculture Nutrition, 2019, 25(6): 1241-1249. doi: 10.1111/anu.12938

[21]

Schrama J W, Saravanan S, Geurden I, et al. Dietary nutrient composition affects digestible energy utilisation for growth: a study on Nile tilapia (Oreochromis niloticus) and a literature comparison across fish species [J]. The British Journal of Nutrition, 2012, 108(2): 277-289. doi: 10.1017/S0007114511005654

[22]

Xie S, Cui Y, Yang Y, et al. Effect of body size on growth and energy budget of Nile tilapia, Oreochromis niloticus [J]. Aquaculture, 1997, 157(1): 25-34.

[23]

Yang S, Zhai S W, Shepherd B S, et al. Determination of optimal feeding rates for juvenile lake sturgeon (Acipenser fulvescens) fed a formulated dry diet [J]. Aquaculture Nutrition, 2019, 25(6): 1171-1182. doi: 10.1111/anu.12932

[24] 李紅燕, 巫麗云, 董博, 等. 飼料糖和脂水平對(duì)團(tuán)頭魴生長性能及血漿代謝物的影響 [J]. 水生生物學(xué)報(bào), 2021, 45(4): 756-763.

Li H Y, Wu L Y, Dong B, et al. Effects of dietary carbohydrate and lipid levels on growth performance and plasma metabolites in juvenile blunt snout bream [J]. Acta Hydrobiologica Sinica, 2021, 45(4): 756-763.

[25]

Hillestad, Johnsen, Austreng, et al. Long-term effects of dietary fat level and feeding rate on growth, feed utilization and carcass quality of Atlantic salmon [J]. Aquaculture Nutrition, 1998, 4(2): 89-97. doi: 10.1046/j.1365-2095.1998.00051.x

[26]

Liu W, Wen H, Luo Z. Effect of dietary protein levels and feeding rates on the growth and health status of juvenile genetically improved farmed tilapia (Oreochromis niloticus) [J]. Aquaculture International, 2018, 26(1): 153-167. doi: 10.1007/s10499-017-0202-6

[27]

Magnuson A M, Regan D P, Booth A D, et al. High-fat diet induced central adiposity (visceral fat) is associated with increased fibrosis and decreased immune cellularity of the mesenteric lymph node in mice [J]. European Journal of Nutrition, 2020, 59(4): 1641-1654. doi: 10.1007/s00394-019-02019-z

[28] 張彩霞, 陳文, 黃艷群, 等. 限飼對(duì)哈巴德肉雞腸道結(jié)構(gòu)的影響 [J]. 江西農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2010, 32(4): 677-682.

Zhang C X, Chen W, Huang Y Q, et al. Effect of feed restriction on harbord broilers’ intestinal structure [J]. Acta Agriculturae Universitatis Jiangxiensis (Natural Sciences Edition), 2010, 32(4): 677-682.

[29]

Fazio F. Fish hematology analysis as an important tool of aquaculture: A review [J]. Aquaculture, 2019(500): 237-242.

[30]

Kawamoto R, Tabara Y, Kohara K, et al. Hematological parameters are associated with metabolic syndrome in Japanese community-dwelling persons [J]. Endocrine, 2013, 43(2): 334-341. doi: 10.1007/s12020-012-9662-7

[31]

Bain B J. Structure and function of red and white blood cells [J]. Medicine, 2017, 45(4): 187-193. doi: 10.1016/j.mpmed.2017.01.011

[32]

Jung K, Ohlrich B, Mildner D, et al. The apoenzyme of aspartate aminotransferase and alanine aminotransferase in the serum of healthy persons and patients suffering from liver diseases [J]. Clinica Chimica Acta, 1978, 90(2): 143-149. doi: 10.1016/0009-8981(78)90515-6

[33] 劉偉, 文華, 蔣明, 等. 飼料蛋白質(zhì)水平與投喂頻率對(duì)吉富羅非魚幼魚生長及部分生理生化指標(biāo)的影響 [J]. 水產(chǎn)學(xué)報(bào), 2016, 40(5): 751-762.

Liu W, Wen H, Jiang M, et al. Effects of dietary protein level and feeding frequency on growth and some physiological-biochemical indexes of GIFT strain of juvenile Nile tilapia (Oreochromis niloticus) [J]. Journal of Fisheries of China, 2016, 40(5): 751-762.

[34] 周順伍. 動(dòng)物生物化學(xué) [M]. 第三版. 北京: 中國農(nóng)業(yè)出版社, 1999: 80-129.

Zhou S W. Animal Biochemistry [M]. The third edition. Beigjing: China Agricultural Press, 1999: 80-129.

[35]

Xu C, Liu W B, Rem? S C, et al. Feeding restriction alleviates high carbohydrate diet-induced oxidative stress and inflammation of Megalobrama amblycephala by activating the AMPK-SIRT1 pathway [J]. Fish & Shellfish Immunology, 2019(92): 637-648.

[36]

Yang S, Lian G. ROS and diseases: role in metabolism and energy supply [J]. Molecular and Cellular Biochemistry, 2020, 467(1): 1-12.

[37] 李效宇, 劉永定, 宋立榮, 等. 鯉肝細(xì)胞抗氧化系統(tǒng)對(duì)微囊藻毒素毒性的反應(yīng) [J]. 水生生物學(xué)報(bào), 2003, 27(5): 472-475. doi: 10.3321/j.issn:1000-3207.2003.05.006

Li X Y, Liu Y D, Song L R, et al. Responses of antioxidant systems in the hepatocytes of common carp (Cyprinus carpio L.) to the toxicity of microcystin-LR [J]. Acta Hydrobiologica Sinica, 2003, 27(5): 472-475. doi: 10.3321/j.issn:1000-3207.2003.05.006

[38]

Rodriguez-Dominguez A, Connell S D, Leung J Y S, et al. Adaptive responses of fishes to climate change: Feedback between physiology and behaviour [J]. Science of the Total Environment, 2019(692): 1242-1249.

[39]

Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges [J]. Analytical Biochemistry, 2017(524): 13-30.

[40] 姚仕彬, 葉元土, 蔡春芳, 等. 丙二醛對(duì)離體草魚腸道黏膜細(xì)胞的損傷作用 [J]. 水生生物學(xué)報(bào), 2015, 39(1): 133-141. doi: 10.7541/2015.17

Yao S B, Ye Y T, Cai C F, et al. Damage of MDA on intestinal epithelial cells in vitro of grass carp (Ctenopharyngodon idella) [J]. Acta Hydrobiologica Sinica, 2015, 39(1): 133-141. doi: 10.7541/2015.17

[41] 盧德勛. 動(dòng)物機(jī)體自我營養(yǎng)調(diào)控功能及其實(shí)踐意義 [J]. 內(nèi)蒙古畜牧科學(xué), 1995(1): 1-10.

Lu D X. Self-nutrition regulation function of animal body and its practical significance [J]. Inner Mongolia Animal Husbandry Science, 1995(1): 1-10.

[42]

Corrales J, Noga E J. Effects of feeding rate on the expression of antimicrobial polypeptides and on susceptibility to Ichthyophthirius multifiliis in hybrid striped (sunshine) bass (Morone saxatilis ♂×M. chrysops ♀) [J]. Aquaculture, 2011, 318(1): 109-121.

相關(guān)知識(shí)

飼料中添加荷葉提取物對(duì)草魚生長和機(jī)體健康的影響
生物發(fā)酵飼料對(duì)仙居雞產(chǎn)蛋性能、蛋品質(zhì)及血清生化指標(biāo)的影響
如何管理和控制飼料中的水分含量?
利用羅非魚下腳料提取魚油的工藝研究
專業(yè)飼養(yǎng)員告訴你:為什么說在動(dòng)物園投喂=投毒?
魚蝦健康高效生長的“密碼”——二甲酸鉀
茶多酚對(duì)蛋雞生產(chǎn)性能、蛋品質(zhì)和機(jī)體健康的影響
河南師范大學(xué)水產(chǎn)飼料配方模型與魚類營養(yǎng)代謝性疾病
禾豐邵彩梅:歐洲飼用抗生素對(duì)我國飼料企業(yè)的啟示
一種含有銀杏葉的飼料飼喂肉雞的方法.pdf

網(wǎng)址: 飼料能量密度和投喂水平對(duì)吉富羅非魚生長和健康的影響 http://www.u1s5d6.cn/newsview889152.html

推薦資訊