Show available content in
Abstract
總結(jié)電刺激促進(jìn)周圍神經(jīng)再生的研究進(jìn)展,歸納臨床前實(shí)驗(yàn)的電刺激參數(shù)并探討其對神經(jīng)再生的影響,介紹條件化電刺激模式和神經(jīng)導(dǎo)管支架技術(shù)等最新研究。
Keywords: 電刺激, 周圍神經(jīng)再生, 神經(jīng)損傷
耳鼻咽喉頭頸區(qū)域涉及多組重要腦神經(jīng),腦神經(jīng)的周圍性損傷會(huì)導(dǎo)致面癱、聲嘶、吞咽困難等一系列相應(yīng)癥狀[1]。不僅嚴(yán)重影響患者的生活質(zhì)量,也會(huì)帶來巨大的經(jīng)濟(jì)負(fù)擔(dān)[2]。目前對于腦神經(jīng)損傷尚缺乏令人滿意的治療手段,針對周圍性神經(jīng)損傷的治療有諸多嘗試,其中電刺激促進(jìn)周圍神經(jīng)再生的研究歷經(jīng)數(shù)十年發(fā)展,取得了顯著進(jìn)展。新近的研究更多關(guān)注電刺激模式的優(yōu)化及將其與生物工程技術(shù)結(jié)合,為周圍神經(jīng)功能修復(fù)提供了新的思路。本文就電刺激促進(jìn)周圍神經(jīng)再生的研究進(jìn)展進(jìn)行綜述。
1943年Hyden開創(chuàng)性地評估了電刺激對軸突再生的影響:利用1~2 mA的正弦交流電刺激脊髓背根神經(jīng)節(jié)1~10 min后觀察到神經(jīng)節(jié)細(xì)胞中尼氏體增加。1952年Hoffman[3]提出了促進(jìn)軸突再生的電刺激參數(shù):部分橫斷脊髓腰5神經(jīng)根后對坐骨神經(jīng)施加50~100 Hz、10~60 min的電刺激能夠增加軸突出芽的速率。Pockett等[4]在大鼠坐骨神經(jīng)擠壓傷后15~60 min內(nèi)給予1 Hz的電刺激,觀察到電刺激組的跖反射恢復(fù)時(shí)間縮短(4.14 d/10.40 d)。
Mendez等[5]觀察到短暫電刺激能加速擠壓或橫斷的面神經(jīng)恢復(fù),并誘導(dǎo)損傷后的面神經(jīng)運(yùn)動(dòng)神經(jīng)元的通路特異性再生。但在Raslan等[6]研究大鼠面神經(jīng)切斷吻合模型中,60 min 20 Hz的電刺激無法明顯加速面神經(jīng)恢復(fù),其效果顯著弱于股神經(jīng)模型。這提示腦神經(jīng)和脊神經(jīng)對電刺激的機(jī)制可能不同,電刺激促進(jìn)腦神經(jīng)損傷修復(fù)效果還需更多的實(shí)驗(yàn)驗(yàn)證。
近年來臨床試驗(yàn)也在逐步開展。Gordon等[7]隨機(jī)對照試驗(yàn)納入21例正中神經(jīng)損傷的受試者:正中神經(jīng)減壓后15 min內(nèi)應(yīng)用20 Hz、4~6 V的電刺激持續(xù)刺激正中神經(jīng)1 h,隨訪6~8個(gè)月后發(fā)現(xiàn)接受正中神經(jīng)電刺激的11例受試者比對照組在更短時(shí)間內(nèi)實(shí)現(xiàn)了感覺神經(jīng)動(dòng)作電位(sensory nerve action potential,SNAP)波幅的提高、SNAP傳導(dǎo)速度的增加和肌肉的再支配。此外,在指神經(jīng)橫斷、肘管綜合征、副神經(jīng)損傷的患者中進(jìn)行的隨機(jī)對照試驗(yàn)均發(fā)現(xiàn)接受電刺激的患者神經(jīng)電生理、感覺和運(yùn)動(dòng)功能均能更快恢復(fù)[8-11]。
隨著電刺激研究的深入,研究者注意到電刺激可能導(dǎo)致一些不良反應(yīng):表面電極需要高電流來克服皮膚阻抗到達(dá)深層組織,可能會(huì)導(dǎo)致疼痛、皮膚刺激和局部燒傷[12];袖帶電極易于植入、創(chuàng)傷性小,可以提供準(zhǔn)確定位的局部電刺激,但也會(huì)使神經(jīng)出現(xiàn)病理反應(yīng)、機(jī)械損傷[13]。
1. 電刺激促進(jìn)周圍神經(jīng)再生的機(jī)制
周圍神經(jīng)損傷后遠(yuǎn)端神經(jīng)發(fā)生華勒氏(Wallerian)變性、髓鞘崩解、軸突骨架變性[14],這通常發(fā)生于損傷后24~48 h。損傷后期遠(yuǎn)端神經(jīng)骨架發(fā)生萎縮、軸突末端脫離靶肌肉/器官[15]。近端神經(jīng)在再生過程開始前發(fā)生退行性改變?nèi)缟窠?jīng)元胞體腫脹、尼氏體變性,同時(shí)細(xì)胞內(nèi)基因表達(dá)改變[16]。軸突整體再生的速度緩慢,約1~3 mm/d[17];在此過程中遠(yuǎn)端肌肉因失神經(jīng)支配逐漸萎縮變性,時(shí)間越長、預(yù)后越差[18]。
周圍神經(jīng)損傷后的修復(fù)過程中損傷部位局部微環(huán)境會(huì)發(fā)生一系列結(jié)構(gòu)變化:首先是髓鞘解體, 施萬細(xì)胞去分化為修復(fù)細(xì)胞[19],巨噬細(xì)胞活化吞噬髓鞘沉積物[20];除清除髓鞘碎片外,巨噬細(xì)胞和施萬細(xì)胞可產(chǎn)生細(xì)胞因子如白細(xì)胞介素-6(IL-6)以促進(jìn)軸突生長;隨著碎片的清除,再生將從損傷部位的近端開始向遠(yuǎn)端延伸;施萬細(xì)胞能夠引導(dǎo)兩側(cè)神經(jīng)末端基底膜之間的軸突萌發(fā)的胞漿延伸[21],Büngner帶由縱行排列的施萬細(xì)胞和新生的內(nèi)膜管形成,內(nèi)膜管將引導(dǎo)萌發(fā)的軸突向目標(biāo)組織移動(dòng)以重新獲得神經(jīng)支配[22-23];同時(shí)Büngner帶會(huì)釋放生長因子包括成纖維細(xì)胞生長因子(fibroblast growth factor,F(xiàn)GF)、神經(jīng)生長因子(nerve growth factor,NGF)、白細(xì)胞介素樣生長因子(Interleukin-like growth factor,IGF)、腦源性神經(jīng)營養(yǎng)因子(brain-derived growth factor,BDNF)和血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)加速軸突再生[15, 24-25];損傷后1~2 d促炎癥的M1巨噬細(xì)胞明顯增加,損傷后3~4 d向促再生和抗炎癥的M2巨噬細(xì)胞分化從而減少局部炎癥反應(yīng)、促進(jìn)神經(jīng)再生[26]。
體外實(shí)驗(yàn)發(fā)現(xiàn)電刺激能促進(jìn)脊髓背根神經(jīng)節(jié)中神經(jīng)元內(nèi)的環(huán)腺苷酸(cyclic Adenosine Monophosphate,cAMP)和施萬細(xì)胞中的NGF分泌,cAMP持續(xù)升高可促進(jìn)NGF和細(xì)胞骨架蛋白的表達(dá)[27]。在損傷部位植入預(yù)先電刺激后的施萬細(xì)胞,神經(jīng)元的生長明顯加速[28]。大鼠脛神經(jīng)脫髓鞘模型中電刺激對巨噬細(xì)胞表型產(chǎn)生了顯著的影響,使巨噬細(xì)胞表型從主要的M1型轉(zhuǎn)變?yōu)镸2型[29]。磷脂酰肌醇3-激酶/蛋白激酶B(phosphatidylinositol 3-kinase/protein kinase B,PI3-K/Akt)細(xì)胞通路在神經(jīng)營養(yǎng)分子的下游信號傳遞中至關(guān)重要[30],而電刺激能減少此通路抑制基因磷酸酶和張力蛋白同源基因(phosphatase and tensin homolog,PTEN)的表達(dá)[31-32],對PI3-K/Akt的藥理性阻斷降低了電刺激對神經(jīng)再生的促進(jìn)作用。
基于以上證據(jù),電刺激促進(jìn)周圍神經(jīng)再生機(jī)制可概括為以下幾個(gè)方面:①促進(jìn)巨噬細(xì)胞浸潤,加速髓鞘和軸突的瓦解及碎片的清除;②上調(diào)BDNF和NGF表達(dá),加速神經(jīng)元生長和分化[33];③促進(jìn)施萬細(xì)胞遷移:近端和遠(yuǎn)端神經(jīng)殘端上的施萬細(xì)胞長入神經(jīng)橋形成施萬細(xì)胞束,引導(dǎo)軸突再生[34];④直接或間接地促進(jìn)內(nèi)皮細(xì)胞的遷移和血管生成相關(guān)的功能基因的表達(dá),施萬細(xì)胞和內(nèi)皮細(xì)胞的遷移、血管的生成都有利于神經(jīng)橋的形成——這些作用可能由PI3K-Akt信號通路介導(dǎo);⑤通過加速早期軸突和血管再生來延緩周圍神經(jīng)損傷后的靶器官/肌肉萎縮。
2. 電刺激的方式和參數(shù)
90年代以來,更多的嚙齒類動(dòng)物損傷模型表明:電刺激能促進(jìn)多種類型周圍神經(jīng)損傷的再生包括神經(jīng)擠壓傷、橫斷傷和慢性損傷[35-36],但不同研究的電刺激方式、刺激參數(shù)(如頻率、脈沖寬度、刺激時(shí)間和周期)以及電極類型差異較大。本研究對近5年各項(xiàng)臨床前實(shí)驗(yàn)的電刺激方式、刺激參數(shù)和電極類型進(jìn)行了回顧總結(jié)。
2.1. 電刺激方式
目前3種主要電刺激方式包括植入式電刺激、一次性直接電刺激和經(jīng)皮電刺激,前2種為有創(chuàng)操作。Ju等[37]在大鼠坐骨神經(jīng)擠壓傷模型中比較了植入式和經(jīng)皮電刺激的效果:均使用25 Hz、0.1 ms、2~3 V的模式每天刺激30 min,每周5次,持續(xù)6周,實(shí)驗(yàn)結(jié)果提示雖然經(jīng)皮電刺激組大鼠在軸突直徑和肌纖維面積上優(yōu)于空白對照組,但效果不及植入電極組。但Pion等[38]在小鼠坐骨神經(jīng)切斷-縫合模型中證實(shí)經(jīng)皮電刺激與直接電刺激在促進(jìn)成年小鼠坐骨神經(jīng)功能恢復(fù)方面同樣有效。相比于一次性直接電刺激,Ju等[37]使用長時(shí)間、高密度的電刺激模式,可能更能發(fā)揮植入電極的優(yōu)勢,因而獲得更好的效果。
除電刺激方式外,對刺激電極的更新和探索也是研究重點(diǎn)之一,近5年動(dòng)物實(shí)驗(yàn)的電極應(yīng)用總結(jié)見表 1。Yu等[39]比較了植入不同接觸面積的電極對大鼠坐骨神經(jīng)切斷-縫合模型再生效果的影響:點(diǎn)接觸電極和1/4圈接觸組在植入后4周和10周的坐骨神經(jīng)功能指數(shù)(sciatic functional index,SFI)、復(fù)合肌肉動(dòng)作電位(compound muscle action potential,CMAP)和運(yùn)動(dòng)神經(jīng)傳導(dǎo)速度(motor nerve conduction velocity,MNCV)方面的表現(xiàn)都顯著優(yōu)于無電極組。與全接觸組比較,點(diǎn)和1/4圈接觸能夠促進(jìn)坐骨神經(jīng)的再生,且在植入后4周和10周觀察到的神經(jīng)干的機(jī)械損傷較少。在電極設(shè)計(jì)上,MacEwan等[40]研發(fā)的植入式薄膜無線神經(jīng)刺激器可顯著改善大鼠的功能恢復(fù),并且具有可完全植入、無連接線、無電源的優(yōu)勢,方便重復(fù)、長時(shí)間給予治療性電刺激。
表 1. 電刺激促進(jìn)周圍神經(jīng)再生臨床前實(shí)驗(yàn)中對電刺激方式、電極材料、參數(shù)的研究
參考文獻(xiàn) 臨床疾病模型 電刺激參數(shù) 電極 動(dòng)物模型 實(shí)驗(yàn)結(jié)論 [38] 周圍神經(jīng)損傷 20 Hz,0.1 ms,5 V,1 h 雙極鉤狀電極 小鼠,坐骨神經(jīng)切斷-縫合模型 經(jīng)皮電刺激與直接電刺激對成年小鼠坐骨神經(jīng)功能恢復(fù)有相同的促進(jìn)作用,顯著優(yōu)于單純軸突切斷后縫合 [54] 周圍神經(jīng)損傷后異體移植修復(fù) 20 Hz,0.2 ms,1 h/d,0/3/6/9/12 d 植入式薄膜無線神經(jīng)刺激器 大鼠,坐骨神經(jīng)橫斷后移植40 mm的同種異體神經(jīng) 持續(xù)6 d治療性電刺激對功能恢復(fù)最為有效 [43] 周圍神經(jīng)損傷 16 Hz,0.1 ms,0.5 mA,10/60 min 不銹鋼304鉤狀電極 大鼠,坐骨神經(jīng)切斷-縫合模型 10 min電刺激與60 min方案促進(jìn)效果相似 [42] 周圍神經(jīng)損傷 16 Hz,0.5 mA,10/60 min 不銹鋼鉤狀電極 小鼠,坐骨神經(jīng)切斷-縫合模型 10 min電刺激能夠加速軸突再生并促進(jìn)功能恢復(fù) [55] 周圍神經(jīng)損傷后自體移植修復(fù) 20 Hz,0.1 ms,3~5 V,1 h Cooner銅導(dǎo)線末端 大鼠,腓總神經(jīng)切斷后移植對側(cè)腓總神經(jīng) 單次電刺激能夠促進(jìn)自體神經(jīng)移植后的軸突再生;延遲電刺激的效果有限 [37] 周圍神經(jīng)損傷 25 Hz,0.1 ms,2~3 V,30 min,每周5次,持續(xù)6周 植入電極/經(jīng)皮電刺激 大鼠,單側(cè)坐骨神經(jīng)擠壓傷 植入電極組的大鼠較經(jīng)皮電刺激組神經(jīng)功能恢復(fù)更快 [39] 周圍神經(jīng)損傷 20 Hz,0.1 ms,9 V,30 min/d,持續(xù)20 d 點(diǎn)接觸電極、1/4環(huán)接觸電極、整圓接觸電極 小鼠,坐骨神經(jīng)切斷-縫合模型 點(diǎn)接觸組與1/4環(huán)接觸組均能夠促進(jìn)坐骨神經(jīng)再生,且較全接觸組機(jī)械損傷小 [56] 周圍神經(jīng)損傷 20 Hz,0.3 ms,1 h/3 d,持續(xù)2周 植入式袖狀電極 小鼠,坐骨神經(jīng)切斷-縫合模型 重復(fù)電刺激無法提高肌肉神經(jīng)再支配恢復(fù)率,并導(dǎo)致反射亢進(jìn) [44] 周圍神經(jīng)損傷 5/100 Hz,0.2 ms,30 min/d,持續(xù)7 d 經(jīng)皮電刺激 大鼠,單側(cè)坐骨神經(jīng)擠壓傷 經(jīng)皮高頻電刺激具有促進(jìn)運(yùn)動(dòng)神經(jīng)再生的潛力 [40] 周圍神經(jīng)損傷 20 Hz,0.2 ms,2.5 V,1 h 植入式神經(jīng)刺激器 大鼠,坐骨神經(jīng)擠壓傷/坐骨神經(jīng)切斷-縫合模型 植入式無線刺激器對損傷的周圍神經(jīng)組織有治療作用,適宜臨床轉(zhuǎn)化 2.2. 電刺激參數(shù)
有效的電刺激治療需要確定安全的、最佳的刺激參數(shù),電刺激的效果取決于各種變量如電流、頻率、持續(xù)時(shí)間、波形等,不同頻率和電流的電刺激對神經(jīng)元影響差異較大,但機(jī)制尚不明晰[41]。
Sayanagi等[42]和Roh等[43]分別在小鼠和大鼠的坐骨神經(jīng)損傷模型中應(yīng)用16 Hz、0.5 mA的電流進(jìn)行10 min或60 min的電刺激,評估神經(jīng)節(jié)基因表達(dá)、神經(jīng)元數(shù)量和形態(tài)、肌肉重量和行為學(xué),發(fā)現(xiàn)持續(xù)10 min與60 min對神經(jīng)再生促進(jìn)作用相同。Su等[44]對坐骨神經(jīng)損傷的大鼠進(jìn)行了不同時(shí)間點(diǎn)、刺激頻率和強(qiáng)度的電刺激效果評價(jià),發(fā)現(xiàn)即刻和遲期(損傷1周后)的高頻電刺激(100 Hz)都較低頻電刺激(5 Hz)的運(yùn)動(dòng)功能改善明顯,體內(nèi)、體外實(shí)驗(yàn)均提示高頻電刺激比低頻更能誘導(dǎo)背根神經(jīng)節(jié)細(xì)胞炎癥反應(yīng)的發(fā)生。對近5年周圍神經(jīng)再生動(dòng)物模型的電刺激參數(shù)研究的總結(jié)見表 1。目前周圍神經(jīng)損傷動(dòng)物模型中最常用的電刺激參數(shù)是20 Hz、0.1 ms、3~5 V或0.5 mA,每次刺激1 h,并傾向于短時(shí)間、單次應(yīng)用,這與目前臨床應(yīng)用于患者的電刺激標(biāo)準(zhǔn)模式一致:以20 Hz和0.1 ms脈沖刺激1 h。對于臨床前實(shí)驗(yàn)的參數(shù)研究有利于制定更有效的臨床方案。
3. 條件化電刺激
以上電刺激模式均應(yīng)用于神經(jīng)損傷后,但Senger團(tuán)隊(duì)研究發(fā)現(xiàn):與擠壓傷類似,在神經(jīng)損傷前應(yīng)用電刺激也能夠促進(jìn)周圍神經(jīng)橫斷后再生。與對照組比較,損傷前1周進(jìn)行電刺激和神經(jīng)擠壓傷都使大鼠坐骨神經(jīng)切斷-縫合后1周的軸突再生長度增加3.8倍,軸突數(shù)量增加2.2倍[45],通過比較機(jī)械感覺、復(fù)合肌肉動(dòng)作電位和行為學(xué)特性發(fā)現(xiàn)條件化電刺激在提高再生神經(jīng)功能方面更有優(yōu)勢[46]。但條件化電刺激對交感神經(jīng)軸突再生效果有限[47],可能與交感神經(jīng)軸突對電刺激的反應(yīng)方式與運(yùn)動(dòng)神精軸突和感覺神精軸突不一致有關(guān)[47]。該團(tuán)隊(duì)同時(shí)提出,相比于損傷后電刺激,術(shù)前條件化電刺激在周圍神經(jīng)的軸突再生和功能恢復(fù)方面效果更佳,坐骨神經(jīng)損傷模型中條件化電刺激、損傷后電刺激、條件化+損傷后電刺激、對照組的7 d軸突再生長度分別是8.5 mm、5.5 mm、3.6 mm、2.7 mm。值得注意的是,在術(shù)前、術(shù)后同時(shí)進(jìn)行電刺激,神經(jīng)再生的效果并未出現(xiàn)疊加效應(yīng)[48]。
在此基礎(chǔ)上Senger團(tuán)隊(duì)利用脛神經(jīng)分支吻合腓總神經(jīng)遠(yuǎn)端殘端,并在術(shù)前1周對脛神經(jīng)進(jìn)行電刺激。與對照組比較,采用條件化電刺激治療的大鼠在行為學(xué)、電生理學(xué)以及神經(jīng)和肌肉組織學(xué)方面都存在明顯的改善[17]。
條件化電刺激促進(jìn)神經(jīng)再生的機(jī)制可能是使神經(jīng)元胞體基因表達(dá)模式改變?yōu)椤皳p傷/修復(fù)”狀態(tài),再生相關(guān)基因、軸突結(jié)構(gòu)蛋白基因的表達(dá)上調(diào),但不引起軸突變性或巨噬細(xì)胞浸潤[49]。因此,條件化電刺激的一個(gè)臨床應(yīng)用場景是:當(dāng)腫瘤組織侵犯或嚴(yán)重的軟組織創(chuàng)傷難以避免犧牲神經(jīng)時(shí),可考慮使用神經(jīng)跨接的方式吻合神經(jīng)或者暫時(shí)寄養(yǎng)神經(jīng),防止支配的肌肉萎縮,并在神經(jīng)吻合前利用電刺激使供體神經(jīng)進(jìn)入儲備或應(yīng)激狀態(tài),加速后期軸突再生。
4. 電刺激結(jié)合神經(jīng)導(dǎo)管技術(shù)
神經(jīng)引導(dǎo)支架可通過生物工程提供神經(jīng)外膜或神經(jīng)束膜的支架結(jié)構(gòu),建立類似于細(xì)胞外基質(zhì)的微環(huán)境,利用電紡和3D打印等技術(shù)設(shè)計(jì)支架模仿自體移植的形態(tài)結(jié)構(gòu),引導(dǎo)神經(jīng)再生、增強(qiáng)電刺激對軸突沿電場的引導(dǎo)作用。
Li等[50]將一種具有導(dǎo)電性和機(jī)械性能的碳納米管/絲氨酸神經(jīng)導(dǎo)管應(yīng)用于大鼠損傷模型中,結(jié)合電刺激修補(bǔ)橫斷坐骨神經(jīng)的10 mm缺口,12周后觀察到該導(dǎo)管結(jié)合電刺激可以有效地促進(jìn)結(jié)構(gòu)修復(fù)和功能恢復(fù),與自體神經(jīng)移植效果相當(dāng)。張喜等[51]研發(fā)的神經(jīng)導(dǎo)管也獲得相似結(jié)果。Lu等[52]設(shè)計(jì)了一種可生物降解的導(dǎo)電聚/石墨烯復(fù)合導(dǎo)管,表面的微圖案是通過微壓印技術(shù)和自組裝的聚多巴胺制作的20 μm的凹槽,應(yīng)用于大鼠坐骨神經(jīng)擠壓傷模型中發(fā)現(xiàn):帶有電刺激的傳導(dǎo)性微圖案導(dǎo)管能促進(jìn)髓鞘的生長和加快神經(jīng)再生,并在體內(nèi)實(shí)現(xiàn)20倍于對照組的功能恢復(fù)。更多體外試驗(yàn)證明帶有電刺激的導(dǎo)管能有效地刺激施萬細(xì)胞的定向遷移、黏附和伸長,促進(jìn)施萬細(xì)胞表達(dá)神經(jīng)生長因子[52-53]。
5. 展望
作為周圍神經(jīng)康復(fù)的重要手段,電刺激促進(jìn)周圍神經(jīng)再生的作用已經(jīng)被廣泛接受。臨床前實(shí)驗(yàn)和分子機(jī)制方面已取得顯著進(jìn)展,從機(jī)制的可行性及實(shí)際運(yùn)用的有效性而言,電刺激與手術(shù)結(jié)合可作為周圍神經(jīng)損傷的新型治療手段,尤其在聯(lián)合神經(jīng)營養(yǎng)藥物、理療等治療方式時(shí)可改善治療效果。臨床探索仍處于起步階段,在廣泛應(yīng)用于臨床前需對電刺激的最佳參數(shù)和安全范圍進(jìn)行更大范圍的研究;評估電刺激應(yīng)用于神經(jīng)移植前預(yù)處理的安全性和有效性。此外,在電刺激應(yīng)用于腦神經(jīng)方面需要更多的基礎(chǔ)研究和臨床數(shù)據(jù)。
Funding Statement
北京市自然科學(xué)基金資助(No:7242107);中央高?;究蒲袠I(yè)務(wù)費(fèi)項(xiàng)目(No:3332021010);中央高水平醫(yī)院臨床科研專項(xiàng)(No:2022-PUMCH-A-094)
Footnotes
References
1.Kim SJ, Lee HY. Acute Peripheral Facial Palsy: Recent Guidelines and a Systematic Review of the Literature. J Korean Med Sci. 2020;35(30):e245. doi: 10.3346/jkms.2020.35.e245. [DOI] [PMC free article] [PubMed] [Google Scholar] 2.許 麗麗, 張 文, 劉 暉, et al. 慢性中耳炎生活質(zhì)量相關(guān)量表的研究進(jìn)展. 臨床耳鼻咽喉頭頸外科雜志. 2022;36(1):72–75. doi: 10.13201/j.issn.2096-7993.2022.01.017. [DOI] [PMC free article] [PubMed] [Google Scholar] 3.Hoffman H. Acceleration and retardation of the process of axon-sprouting in partially devervated muscles. Aust J Exp Biol Med Sci. 1952;30(6):541–566. doi: 10.1038/icb.1952.52. [DOI] [PubMed] [Google Scholar] 4.Pockett S, Gavin RM. Acceleration of peripheral nerve regeneration after crush injury in rat. Neurosci Lett. 1985;59(2):221–224. doi: 10.1016/0304-3940(85)90203-4. [DOI] [PubMed] [Google Scholar] 5.Mendez A, Hopkins A, Biron VL, et al. Brief electrical stimulation and synkinesis after facial nerve crush injury: a randomized prospective animal study. J Otolaryngol Head Neck Surg. 2018;47(1):20. doi: 10.1186/s40463-018-0264-0. [DOI] [PMC free article] [PubMed] [Google Scholar] 6.Raslan A, Salem M, Al-Hussaini A, et al. Brief Electrical Stimulation Improves Functional Recovery After Femoral But Not After Facial Nerve Injury in Rats. Anat Rec(Hoboken) 2019;302(8):1304–1313. doi: 10.1002/ar.24127. [DOI] [PubMed] [Google Scholar] 7.Gordon T, Amirjani N, Edwards DC, et al. Brief post-surgical electrical stimulation accelerates axon regeneration and muscle reinnervation without affecting the functional measures in carpal tunnel syndrome patients. Exp Neurol. 2010;223(1):192–202. doi: 10.1016/j.expneurol.2009.09.020. [DOI] [PubMed] [Google Scholar] 8.Wong JN, Olson JL, Morhart MJ, et al. Electrical stimulation enhances sensory recovery: a randomized controlled trial. Ann Neurol. 2015;77(6):996–1006. doi: 10.1002/ana.24397. [DOI] [PubMed] [Google Scholar] 9.Barber B, Seikaly H, Ming Chan K, et al. Intraoperative Brief Electrical Stimulation of the Spinal Accessory Nerve(BEST SPIN)for prevention of shoulder dysfunction after oncologic neck dissection: a double-blinded, randomized controlled trial. J Otolaryngol Head Neck Surg. 2018;47(1):7. doi: 10.1186/s40463-017-0244-9. [DOI] [PMC free article] [PubMed] [Google Scholar] 10.Power HA, Morhart MJ, Olson JL, et al. Postsurgical Electrical Stimulation Enhances Recovery Following Surgery for Severe Cubital Tunnel Syndrome: A Double-Blind Randomized Controlled Trial. Neurosurgery. 2020;86(6):769–777. doi: 10.1093/neuros/nyz322. [DOI] [PubMed] [Google Scholar] 11.薛 金偉, 陳 漢聲, 王 華偉, et al. 經(jīng)皮神經(jīng)肌肉電刺激促進(jìn)肘管綜合征術(shù)后尺神經(jīng)恢復(fù)的研究. 中國實(shí)驗(yàn)診斷學(xué). 2021;25(3):351–353. [Google Scholar] 12.Tringides CM, Mooney DJ. Materials for Implantable Surface Electrode Arrays: Current Status and Future Directions. Adv Mater. 2022;34(20):e2107207. doi: 10.1002/adma.202107207. [DOI] [PubMed] [Google Scholar] 13.Thakur R, Jin A, Nair A, et al. Nerve cuff electrode pressure estimation via electrical impedance measurement. J Neural Eng. 2019;16(6):064003. doi: 10.1088/1741-2552/ab486f. [DOI] [PubMed] [Google Scholar] 14.Cashman CR, H?ke A. Mechanisms of distal axonal degeneration in peripheral neuropathies. Neurosci Lett. 2015;596:33–50. doi: 10.1016/j.neulet.2015.01.048. [DOI] [PMC free article] [PubMed] [Google Scholar] 15.Hussain G, Wang J, Rasul A, et al. Current Status of Therapeutic Approaches against Peripheral Nerve Injuries: A Detailed Story from Injury to Recovery. Int J Biol Sci. 2020;16(1):116–134. doi: 10.7150/ijbs.35653. [DOI] [PMC free article] [PubMed] [Google Scholar] 16.Rishal I, Fainzilber M. Axon-soma communication in neuronal injury. Nat Rev Neurosci. 2014;15(1):32–42. doi: 10.1038/nrn3609. [DOI] [PubMed] [Google Scholar] 17.Senger JB, Rabey KN, Morhart MJ, et al. Conditioning Electrical Stimulation Accelerates Regeneration in Nerve Transfers. Ann Neurol. 2020;88(2):363–374. doi: 10.1002/ana.25796. [DOI] [PubMed] [Google Scholar] 18.Gordon T. Peripheral Nerve Regeneration and Muscle Reinnervation. Int J Mol Sci. 2020;21(22):8652. doi: 10.3390/ijms21228652. [DOI] [PMC free article] [PubMed] [Google Scholar] 19.Zhang SH, Shurin GV, Khosravi H, et al. Immunomodulation by Schwann cells in disease. Cancer Immunol Immunother. 2020;69(2):245–253. doi: 10.1007/s00262-019-02424-7. [DOI] [PMC free article] [PubMed] [Google Scholar] 20.Jha MK, Passero JV, Rawat A, et al. Macrophage monocarboxylate transporter 1 promotes peripheral nerve regeneration after injury in mice. J Clin Invest. 2021;131(21):e141964. doi: 10.1172/JCI141964. [DOI] [PMC free article] [PubMed] [Google Scholar] 21.Deumens R, Bozkurt A, Meek MF, et al. Repairing injured peripheral nerves: Bridging the gap. Prog Neurobiol. 2010;92(3):245–276. doi: 10.1016/j.pneurobio.2010.10.002. [DOI] [PubMed] [Google Scholar] 22.Jessen KR, Mirsky R. The repair Schwann cell and its function in regenerating nerves. J Physiol. 2016;594(13):3521–3531. doi: 10.1113/JP270874. [DOI] [PMC free article] [PubMed] [Google Scholar] 23.Maugeri G, D'Amico AG, Musumeci G, et al. Effects of Pacap on Schwann Cells: Focus on Nerve Injury. Int J Mol Sci. 2020;21(21):8233. doi: 10.3390/ijms21218233. [DOI] [PMC free article] [PubMed] [Google Scholar] 24.Panzer KV, Burrell JC, Helm K, et al. Tissue Engineered Bands of Büngner for Accelerated Motor and Sensory Axonal Outgrowth. Front Bioeng Biotechnol. 2020;8:580654. doi: 10.3389/fbioe.2020.580654. [DOI] [PMC free article] [PubMed] [Google Scholar] 25.Caillaud M, Richard L, Vallat JM, et al. Peripheral nerve regeneration and intraneural revascularization. Neural Regen Res. 2019;14(1):24–33. doi: 10.4103/1673-5374.243699. [DOI] [PMC free article] [PubMed] [Google Scholar] 26.Lv W, Deng B, Duan W, et al. FGF9 alters the Wallerian degeneration process by inhibiting Schwann cell transformation and accelerating macrophage infiltration. Brain Res Bull. 2019;152:285–296. doi: 10.1016/j.brainresbull.2019.06.011. [DOI] [PubMed] [Google Scholar] 27.Udina E, Furey M, Busch S, et al. Electrical stimulation of intact peripheral sensory axons in rats promotes outgrowth of their central projections. Exp Neurol. 2008;210(1):238–247. doi: 10.1016/j.expneurol.2007.11.007. [DOI] [PubMed] [Google Scholar] 28.Koppes AN, Nordberg AL, Paolillo GM, et al. Electrical stimulation of schwann cells promotes sustained increases in neurite outgrowth. Tissue Eng Part A. 2014;20(3-4):494–506. doi: 10.1089/ten.tea.2013.0012. [DOI] [PMC free article] [PubMed] [Google Scholar] 29.McLean NA, Verge VM. Dynamic impact of brief electrical nerve stimulation on the neural immune axis-polarization of macrophages toward a pro-repair phenotype in demyelinated peripheral nerve. Glia. 2016;64(9):1546–1561. doi: 10.1002/glia.23021. [DOI] [PubMed] [Google Scholar] 30.Xu F, Na L, Li Y, et al. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci. 2020;10(1):54. doi: 10.1186/s13578-020-00416-0. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted] 31.álvarez-Garcia V, Tawil Y, Wise HM, et al. Mechanisms of PTEN loss in cancer: It's all about diversity. Semin Cancer Biol. 2019;59:66–79. doi: 10.1016/j.semcancer.2019.02.001. [DOI] [PubMed] [Google Scholar] 32.Qian X, Li X, Shi Z, et al. PTEN Suppresses Glycolysis by Dephosphorylating and Inhibiting Autophosphorylated PGK1. Mol Cell. 2019;76(3):516–527. doi: 10.1016/j.molcel.2019.08.006. [DOI] [PubMed] [Google Scholar] 33.Richner M, Ulrichsen M, Elmegaard SL, et al. Peripheral nerve injury modulates neurotrophin signaling in the peripheral and central nervous system. Mol Neurobiol. 2014;50(3):945–970. doi: 10.1007/s12035-014-8706-9. [DOI] [PubMed] [Google Scholar] 34.Min Q, Parkinson DB, Dun XP. Migrating Schwann cells direct axon regeneration within the peripheral nerve bridge. Glia. 2021;69(2):235–254. doi: 10.1002/glia.23892. [DOI] [PubMed] [Google Scholar] 35.鄭 前進(jìn), 韓 先順, 段 勇, et al. 低頻電刺激促進(jìn)周圍神經(jīng)損傷后再生和修復(fù)的研究. 中華實(shí)驗(yàn)外科雜志. 2020;37(3):517–519. [Google Scholar] 36.Huang J, Zhang Y, Lu L, et al. Electrical stimulation accelerates nerve regeneration and functional recovery in delayed peripheral nerve injury in rats. Eur J Neurosci. 2013;38(12):3691–3701. doi: 10.1111/ejn.12370. [DOI] [PubMed] [Google Scholar] 37.Ju C, Park E, Kim T, et al. Effectiveness of electrical stimulation on nerve regeneration after crush injury: Comparison between invasive and non-invasive stimulation. PLoS One. 2020;15(5):e0233531. doi: 10.1371/journal.pone.0233531. [DOI] [PMC free article] [PubMed] [Google Scholar] 38.Pion AM, Roy AA, Ma X, et al. Transcutaneous and Direct Electrical Stimulation of Mouse Sciatic Nerve Accelerates Functional Recovery After Nerve Transection and Immediate Repair. Ann Plast Surg. 2023;90(3):237–241. doi: 10.1097/SAP.0000000000003463. [DOI] [PubMed] [Google Scholar] 39.Yu AP, Shen YJ, Qiu YQ, et al. Comparative effects of implanted electrodes with differing contact patterns on peripheral nerve regeneration and functional recovery. Neurosci Res. 2019;145:22–29. doi: 10.1016/j.neures.2018.08.007. [DOI] [PubMed] [Google Scholar] 40.MacEwan MR, Gamble P, Stephen M, et al. Therapeutic electrical stimulation of injured peripheral nerve tissue using implantable thin-film wireless nerve stimulators. J Neurosurg. 2018:1–10. doi: 10.3171/2017.8.JNS163020. [DOI] [PubMed] [Google Scholar] 41.Lu MC, Tsai CC, Chen SC, et al. Use of electrical stimulation at different current levels to promote recovery after peripheral nerve injury in rats. J Trauma. 2009;67(5):1066–1072. doi: 10.1097/TA.0b013e318182351a. [DOI] [PubMed] [Google Scholar] 42.Sayanagi J, Acevedo-Cintrón JA, Pan D, et al. Brief Electrical Stimulation Accelerates Axon Regeneration and Promotes Recovery Following Nerve Transection and Repair in Mice. J Bone Joint Surg Am. 2021;103(20):e80. doi: 10.2106/JBJS.20.01965. [DOI] [PubMed] [Google Scholar] 43.Roh J, Schellhardt L, Keane GC, et al. Short-Duration, Pulsatile, Electrical Stimulation Therapy Accelerates Axon Regeneration and Recovery following Tibial Nerve Injury and Repair in Rats. Plast Reconstr Surg. 2022;149(4):681e–690e. doi: 10.1097/PRS.0000000000008924. [DOI] [PMC free article] [PubMed] [Google Scholar] 44.Su HL, Chiang CY, Lu ZH, et al. Late administration of high-frequency electrical stimulation increases nerve regeneration without aggravating neuropathic pain in a nerve crush injury. BMC Neurosci. 2018;19(1):37. doi: 10.1186/s12868-018-0437-9. [DOI] [PMC free article] [PubMed] [Google Scholar] 45.Senger J, Verge V, Macandili H, et al. Electrical stimulation as a conditioning strategy for promoting and accelerating peripheral nerve regeneration. Exp Neurol. 2018;302:75–84. doi: 10.1016/j.expneurol.2017.12.013. [DOI] [PubMed] [Google Scholar] 46.Senger JL, Chan KM, Macandili H, et al. Conditioning electrical stimulation promotes functional nerve regeneration. Exp Neurol. 2019;315:60–71. doi: 10.1016/j.expneurol.2019.02.001. [DOI] [PubMed] [Google Scholar] 47.Tian T, Harris A, Owyoung J, et al. Conditioning electrical stimulation fails to enhance sympathetic axon regeneration. ioRxiv[Preprint] 2023;2023:527071. doi: 10.1101/2023.02.03.527071. [DOI] [Google Scholar] 48.Senger JB, Chan KM, Webber CA. Conditioning electrical stimulation is superior to postoperative electrical stimulation, resulting in enhanced nerve regeneration and functional recovery. Exp Neurol. 2020;325:113147. doi: 10.1016/j.expneurol.2019.113147. [DOI] [PubMed] [Google Scholar] 49.Yang X, Liu R, Xu Y, et al. The Mechanisms of Peripheral Nerve Preconditioning Injury on Promoting Axonal Regeneration. Neural Plast. 2021;2021:6648004. doi: 10.1155/2021/6648004. [DOI] [PMC free article] [PubMed] [Google Scholar] 50.Li X, Yang W, Xie H, et al. CNT/Sericin Conductive Nerve Guidance Conduit Promotes Functional Recovery of Transected Peripheral Nerve Injury in a Rat Model. ACS Appl Mater Interfaces. 2020;12(33):36860–36872. doi: 10.1021/acsami.0c08457. [DOI] [PubMed] [Google Scholar] 51.張喜. 導(dǎo)電性功能化聚合物基神經(jīng)組織移植物用于外周神經(jīng)缺損修復(fù)[D]. 吉林: 吉林大學(xué), 2020. 52.Lu S, Chen W, Wang J, et al. Polydopamine-Decorated PLCL Conduit to Induce Synergetic Effect of Electrical Stimulation and Topological Morphology for Peripheral Nerve Regeneration. Small Methods. 2023;7(2):e2200883. doi: 10.1002/smtd.202200883. [DOI] [PubMed] [Google Scholar] 53.Wu S, Qi Y, Shi W, et al. Electrospun conductive nanofiber yarns for accelerating mesenchymal stem cells differentiation and maturation into Schwann cell-like cells under a combination of electrical stimulation and chemical induction. Acta Biomater. 2022;139:91–104. doi: 10.1016/j.actbio.2020.11.042. [DOI] [PMC free article] [PubMed] [Google Scholar] 54.Birenbaum NK, Yan Y, Odabas A, et al. Multiple sessions of therapeutic electrical stimulation using implantable thin-film wireless nerve stimulators improve functional recovery after sciatic nerve isograft repair. Muscle Nerve. 2023;67(3):244–251. doi: 10.1002/mus.27776. [DOI] [PubMed] [Google Scholar] 55.Zuo KJ, Shafa G, Antonyshyn K, et al. A single session of brief electrical stimulation enhances axon regeneration through nerve autografts. Exp Neurol. 2020;323:113074. doi: 10.1016/j.expneurol.2019.113074. [DOI] [PubMed] [Google Scholar] 56.Park S, Liu CY, Ward PJ, et al. Effects of Repeated 20-Hz Electrical Stimulation on Functional Recovery Following Peripheral Nerve Injury. Neurorehabil Neural Repair. 2019;33(9):775–784. doi: 10.1177/1545968319862563. [DOI] [PMC free article] [PubMed] [Google Scholar]