植物類(lèi)黃酮化合物生物合成調(diào)控研究進(jìn)展
摘要: 類(lèi)黃酮化合物是植物次級(jí)代謝產(chǎn)物,具有多種重要的生物學(xué)功能,對(duì)人體健康具有潛在的有益作用,作為抗菌藥物在植物與微生物的相互作用和防御反應(yīng)中發(fā)揮重要作用。本文總結(jié)了類(lèi)黃酮化合物的生物合成途徑以及調(diào)控規(guī)律,重點(diǎn)綜述了外界環(huán)境如光照、溫度、水分、輻射、激素、礦物質(zhì)和MYB、bHLH、WD40以及NAC等轉(zhuǎn)錄因子對(duì)類(lèi)黃酮化合物合成的影響,加強(qiáng)這方面的研究,旨在為植物類(lèi)黃酮功能性成分更好地開(kāi)發(fā)和利用做出指導(dǎo)。
Abstract: Flavonoids are secondary metabolites of plants, which have a variety of important biological functions and have potential beneficial effects on human health. As antibacterial agents, flavonoids play an important role in the interaction and defense reaction between plants and microorganisms. This article summarizes the biosynthetic pathways and regulation rules of flavonoids, focusing on the effects of external environment such as light, temperature, moisture, radiation, hormones, minerals and transcription factors such as MYB, bHLH, WD40 and NAC on the synthesis of flavonoids. Strengthen research in this area, aiming to provide guidance for the better development and utilization of plant flavonoid functional ingredients.
圖 1 類(lèi)黃酮的結(jié)構(gòu)
Figure 1. Structure of flavonoids
圖 2 植物類(lèi)黃酮生物合成途徑
Figure 2. Biosynthesis pathway of plant flavonoids
[1] 張學(xué)明, 齊曉光, 陳玉波, 等. 草莓類(lèi)黃酮化合物的研究進(jìn)展[J]. 北方園藝,2020(1):128?133. [ZHANG X M, QI X G, CHEN Y B, et al. Research advances of flavonoids in strawberry[J]. Northern Horticulture,2020(1):128?133. [2] 喬小燕, 馬春雷, 陳亮. 植物類(lèi)黃酮生物合成途徑及重要基因的調(diào)控[J]. 天然產(chǎn)物研究與開(kāi)發(fā),2009,21(2):354?360. [QIAO X Y, MA C L, CHEN L. Plant flavonoid biosynthesis pathway and regulation of its important genes[J]. Natural Product Research and Development,2009,21(2):354?360. doi: 10.3969/j.issn.1001-6880.2009.02.040 [3] 郭欣慰, 黃叢林, 吳忠義, 等. 植物類(lèi)黃酮生物合成的分子調(diào)控[J]. 北方園藝,2011,1(4):204?207. [GUO X W, HUANG C L, WU Z Y, et al. Molecular regulation of plant flavonoid biosynthesis pathhway[J]. Northern Horticulture,2011,1(4):204?207. [4] 周明, 沈勇根, 朱麗琴, 等. 植物黃酮化合物生物合成、積累及調(diào)控的研究進(jìn)展[J]. 食品研究與開(kāi)發(fā),2016,37(18):216?221. [ZHOU M, SHEN Y G, ZHU L Q, et al. Research progress on biosynthesis, accumulation and regulation of flavonoids in plants[J]. Food Research and Development,2016,37(18):216?221. doi: 10.3969/j.issn.1005-6521.2016.18.052 [5]XU W J, DUBOS C, LEPINIEC L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes[J]. Trends in Plant Science,2015,20(3):176?185. doi: 10.1016/j.tplants.2014.12.001
[6] 邢文, 金曉玲. 調(diào)控植物類(lèi)黃酮生物合成的MYB轉(zhuǎn)錄因子研究進(jìn)展[J]. 分子植物育種,2015,13(3):689?696. [XING W, JIN X L. Recent advances of MYB transcription factors involved in the regulation of flavonoid biosynthesis[J]. Molecular Plant Breeding,2015,13(3):689?696. [7]AVANTIKA PANDEY S B A. Ultraviolet-B radiation a potent regulator of flavonoids biosynthesis, accumulation and functions in plants[J]. Current Science,2020,119(2):176?185.
[8]KARPPINEN K, ZORATTI L, NGUYENQUYNH N, et al. On the developmental and environmental regulation of secondary metabolism in Vaccinium spp. Berries[J]. Frontiers in Plant Science,2016,7:655.
[9] 魏永贊, 李偉才, 董晨, 等. 光照對(duì)植物花色素苷生物合成的調(diào)控及機(jī)制[J]. 植物生理學(xué)報(bào),2017,53(9):1577?1585. [WEI Y Z, LI W C, DONG C, et al. Regulation and mechanism of light on anthocyanin biosynthesis in plants[J]. Plant Physiology Journal,2017,53(9):1577?1585. [10]ZORATTI L, JAAKOLA L, H?GGMAN H, et al. Anthocyanin profile in berries of wild and cultivated Vaccinium spp. along altitudinal gradients in the Alps[J]. Journal of Agricultural and Food Chemistry,2015,63(39):8641?8650. doi: 10.1021/acs.jafc.5b02833
[11]ALBERT N W, LEWIS D H, ZHANG H, et al. Light-induced vegetative anthocyanin pigmentation in Petunia[J]. Journal of Experimental Botany,2009,60(7):2191?2202. doi: 10.1093/jxb/erp097
[12]MATUS J T, LOYOLA R, VEGA A, et al. Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera[J]. Journal of Experimental Botany,2009,60(3):853?867. doi: 10.1093/jxb/ern336
[13]GUAN L, DAI Z, WU B H, et al. Anthocyanin biosynthesis is differentially regulated by light in the skin and flesh of white-fleshed and teinturier grape berries[J]. Planta,2016,243(1):23?41. doi: 10.1007/s00425-015-2391-4
[14]XU Y, WANG G, CAO F, et al. Light intensity affects the growth and flavonol biosynthesis of Ginkgo (Ginkgo biloba L.)[J]. New Forests,2014,45(6):765?776. doi: 10.1007/s11056-014-9435-7
[15]AZUMA A, YAKUSHIJI H, KOSHITA Y, et al. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions[J]. Planta,2012,236(4):1067?1080. doi: 10.1007/s00425-012-1650-x
[16]KIM S, HWANG G, LEE S, et al. High ambient temperature represses anthocyanin biosynthesis through degradation of HY5[J]. Frontiers in Plant Science,2017,8:1787. doi: 10.3389/fpls.2017.01787
[17]WANG G, CAO F L, CHANG L, et al. Temperature has more effects than soil moisture on biosynthesis of flavonoids in Ginkgo (Ginkgo biloba L.) leaves[J]. New Forests,2014,45(6):797?812. doi: 10.1007/s11056-014-9437-5
[18]BROSSA R, CASALS I, PINTó-MARIJUAN M, et al. Leaf flavonoid content in Quercus ilex L. resprouts and its seasonal variation[J]. Trees,2008,23(2):401?408.
[19]YU M, MAN Y P, C W Y. Light and temperature-induced expression of an R2R3-MYB gene regulates anthocyanin biosynthesis in red-fleshed Kiwifruit[J]. International Journal of Molecular Sciences,2019,20(20):5228. doi: 10.3390/ijms20205228
[20]BHATIA C, PANDEY A, GADDAM S R, et al. Low Temperature-enhanced flavonol synthesis requires light-associated regulatory components in Arabidopsis thaliana[J]. Plant and Cell Physiology,2018,59(10):2099?2112. doi: 10.1093/pcp/pcy132
[21]WANG N, QU C, JIANG S H, et al. The proanthocyanidin-specific transcription factor MdMYBPA1 initiates anthocyanin synthesis under low-temperature conditions in red-fleshed apples[J]. The Plant Journal,2018,96(1):39?55. doi: 10.1111/tpj.14013
[22] 常麗. 溫度和土壤水分對(duì)銀杏葉類(lèi)黃酮合成的影響[D]. 南京: 南京林業(yè)大學(xué), 2013.CHANG L. Responses of flavonoid synthesis in Ginkgo leaves to temperature and soil moisture[D]. Nanjing: Nanjing Forestry University, 2013.
[23] 孫利. 不同花生品種類(lèi)黃酮積累及其合成酶活性對(duì)干旱脅迫的響應(yīng)[D]. 泰安: 山東農(nóng)業(yè)大學(xué), 2013.SUN L. Response on the accumulation of flavonoids and synthetase activities among different peanut cultivars to drought stress[D]. Taian: Shandong Agricultural University, 2013.
[24]CUI Z H, BI W L, HAO X Y, et al. Drought stress enhances up-regulation of anthocyanin biosynthesis in Grapevine leafroll-associated virus 3-Infected in vitro Grapevine (Vitis vinifera) Leaves[J]. Plant Disease,2017,101(9):1606?1615. doi: 10.1094/PDIS-01-17-0104-RE
[25]LI P, LI Y J, ZHANG F J, et al. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation[J]. The Plant Journal,2017,89(1):85?103. doi: 10.1111/tpj.13324
[26] 謝岳. 水分脅迫對(duì)赤霞珠葡萄花色苷含量及花色苷合成相關(guān)基因表達(dá)的影響[D]. 銀川: 寧夏大學(xué), 2018.XIE Y. Effects of water stress on content of anthocyanin and expression of genes associated with anthocyanin synthesis in cabernet sauvignon grape[D]. Yinchuan: Ningxia University, 2018.
[27] 莫運(yùn)才, 曾令杰, 黃涵, 等. UV-B輻射對(duì)鐵皮石斛葉片光合色素、類(lèi)黃酮及PAL酶活性的影響[J]. 貴州農(nóng)業(yè)科學(xué), 2015, 43(7): 34?37.MO Y C, ZENG L J, HUANG H, et al. Effects of UV-B radiation on photosynthetic pigments, flavonoids and PAL activity in Dendrobium officinale[D]. Guizhou Agricultural Sciences, 2015, 43(7): 34?37.
[28]HENRY-KIRK R A, PLUNKETT B, HALL M, et al. Solar UV light regulates flavonoid metabolism in apple (Malus x domestica)[J]. Plant Cell & Environment,2018,41(3):675?688.
[29]YANG J F, SHI W J, LI B B, et al. Preharvest and postharvest UV radiation affected flavonoid metabolism and antioxidant capacity differently in developing blueberries(Vaccinium corymbosum L.)[J]. Food Chemistry,2019,301:125248. doi: 10.1016/j.foodchem.2019.125248
[30] 沈欣杰. ABA介導(dǎo)的PacMYBA調(diào)控紅肉甜櫻桃果實(shí)花色苷合成的研究[D]. 北京: 中國(guó)農(nóng)業(yè)大學(xué), 2014.SHEN X J. Studies on the role of PacMYBA in ABA-regulated anthocyainin biosynthesis in red-colored sweet cherry fruit[D]. Beijing: China Agricultural University, 2014.
[31] 李棟棟. 脫落酸調(diào)控草莓果實(shí)成熟的分子機(jī)理和關(guān)鍵miRNA調(diào)控因子的探究[D]. 杭州: 浙江大學(xué), 2019.LI D D. The mechanism of abscisic acid-regulated strawberry fruit ripening and identification of key miRNAs involved[D]. Hangzhou: Zhejiang University, 2019.
[32] 劉生財(cái), 潘君飛, 王曉, 等. MeJA對(duì)莧菜懸浮細(xì)胞類(lèi)黃酮和類(lèi)胡蘿卜素累積及其代謝相關(guān)基因表達(dá)的影響[J]. 應(yīng)用與環(huán)境生物學(xué)報(bào),2019,25(5):1168?1175. [LIU S C, PAN J F, WANG X, et al. Effects of methyl jasmonate on the contents and related metabolic genes of flavonoids and carotenoids in suspension cells of Amaranthus tricolor L[J]. Chinese Journal of Applied and Environmental Biology,2019,25(5):1168?1175. [33]LI Y L, CHEN X L, WANG J Q, et al. Two responses to MeJA induction of R2R3-MYB transcription factors regulate flavonoid accumulation in Glycyrrhiza uralensis Fisch[J]. Public Library of Science,2020,15(7):e0236565.
[34]GONZALEZ-VILLAGRA J, COHEN J D, REYES-DIAZ M M. Abscisic acid is involved in phenolic compounds biosynthesis, mainly anthocyanins, in leaves of Aristotelia chilensis plants (Mol.) subjected to drought stress[J]. Physiologia Plantarum,2019,165(4):855?866. doi: 10.1111/ppl.12789
[35]YANG M Y, WANG L, BELWAL T, et al. Exogenous melatonin and abscisic acid expedite the flavonoids biosynthesis in Grape Berry of Vitis vinifera cv. Kyoho[J]. Molecules,2019,25(1):12. doi: 10.3390/molecules25010012
[36]JIA H F, CHAI Y M, LI C L, et al. Abscisic acid plays an important role in the regulation of strawberry fruit ripening[J]. Plant Physiology,2011,157(1):188?199. doi: 10.1104/pp.111.177311
[37]LIU W, ZHU D W, LIU D H, et al. Comparative metabolic activity related to flavonoid synthesis in leaves and flowers of Chrysanthemum morifolium in response to K deficiency[J]. Plant and Soil,2010,335(1-2):325?337. doi: 10.1007/s11104-010-0421-3
[38]LEA U S, SLIMESTAD R, SMEDVIG P, et al. Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway[J]. Planta,2007,225(5):1245?1253. doi: 10.1007/s00425-006-0414-x
[39]DONG F, HU J H, SHI Y Z, et al. Effects of nitrogen supply on flavonol glycoside biosynthesis and accumulation in tea leaves (Camellia sinensis)[J]. Plant Physiology and Biochemistry,2019,138:48?57. doi: 10.1016/j.plaphy.2019.02.017
[40]YU J, ZHU M T, WANG M J, et al. Transcriptome analysis of calcium-induced accumulation of anthocyanins in grape skin[J]. Scientia Horticulturae,2020,260:108871. doi: 10.1016/j.scienta.2019.108871
[41]XU W P, PENG H, YANG T B, et al. Effect of calcium on strawberry fruit flavonoid pathway gene expression and anthocyanin accumulation[J]. Plant Physiology and Biochemistry,2014,82:289?298. doi: 10.1016/j.plaphy.2014.06.015
[42]JIA H F, WANG J A, YANG Y F, et al. Changes in flavonol content and transcript levels of genes in the flavonoid pathway in tobacco under phosphorus deficiency[J]. Plant Growth Regulation,2015,76(2):225?231. doi: 10.1007/s10725-014-9990-0
[43] 周銹連. 缺磷誘導(dǎo)擬南芥花青素合成積累的蛋白質(zhì)組研究[D]. 杭州: 杭州師范大學(xué), 2019.ZHOU X L. Phosphate deficiency induces anthocyanin biosynthesis and accumulation on proteome research in Arabidopsis thaliana[D]. Hangzhou: Hangzhou Normal University, 2019.
[44]GAO G Y, WU X F, ZHANG D W, et al. Research progress on the MBW complexes in plant anthocyanin biosynthesis pathway[J]. Biotechnology Bulletin,2020,36(1):126?134.
[45] 宋建輝, 郭長(zhǎng)奎, 石敏. 植物花青素生物合成及調(diào)控[J]. 分子植物育種,2021,19(11):3612?3620. [SONG J H, GUO C K, SHI M. Anthocyanin biosynthesis and transcriptional regulation in plant[J]. Molecular Plant Breeding,2021,19(11):3612?3620. [46] 宋雪薇, 魏解冰, 狄少康, 等. 花青素轉(zhuǎn)錄因子調(diào)控機(jī)制及代謝工程研究進(jìn)展[J]. 植物學(xué)報(bào),2019,54(1):133?156. [SONG X W, WEI J B, DI S K, et al. Recent advances in the regulation mechanism of transcription factors and metabolic engineering of anthocyanins[J]. Chinese Bulletin of Botany,2019,54(1):133?156. doi: 10.11983/CBB18016 [47]ANWAR M, YU W J, YAO H, et al. NtMYB3, an R2R3-MYB from Narcissus, regulates flavonoid biosynthesis[J]. International Journal of Molecular Sciences,2019,20(21):5456. doi: 10.3390/ijms20215456
[48]ZHAI R, WANG Z, ZHANG S, et al. Two MYB transcription factors regulate flavonoid biosynthesis in pear fruit (Pyrus bretschneideri Rehd.)[J]. Journal of Experimental Botany,2016,67(5):1275?1284. doi: 10.1093/jxb/erv524
[49]VIMOLMANGKANG S, HAN Y P, WEI G C, et al. An apple MYB transcription factor, MdMYB3, is involved in regulation of anthocyanin biosynthesis and flower development[J]. BMC Plant Biology,2013,13(1):176. doi: 10.1186/1471-2229-13-176
[50]ANWAR M, WANG G Q, WU J C, et al. Ectopic overexpression of a Novel R2R3-MYB, NtMYB2 from Chinese narcissus represses anthocyanin biosynthesis in Tobacco[J]. Molecules,2018,23(4):781. doi: 10.3390/molecules23040781
[51]ZHU L, GUAN Y X, ZHANG Z H, et al. CmMYB8 encodes an R2R3 MYB transcription factor which represses lignin and flavonoid synthesis in chrysanthemum[J]. Plant Physiology and Biochemistry,2020,149:217?224. doi: 10.1016/j.plaphy.2020.02.010
[52]LI Y Q, SHAN X T, ZHOU L D, et al. The R2R3-MYB factor FhMYB5 from Freesia hybrida contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis[J]. Frontiers in Plant Science,2018,9:1935.
[53]TIAN J, ZHANG J, HAN Z Y, et al. McMYB12 Transcription factors co-regulate proanthocyanidin and anthocyanin biosynthesis in Malus Crabapple[J]. Scientific Reports,2017,7:43715. doi: 10.1038/srep43715
[54]ZHAO P C, LI X X, JIA J T, et al. BHLH92 from sheepgrass acts as a negative regulator of anthocyanin/proanthocyandin accumulation and influences seed dormancy[J]. Journal of Experimental Botany,2019,70(1):269?284. doi: 10.1093/jxb/ery335
[55]ZHAO Y, ZHANG Y Y, LIU H, et al. Functional characterization of a liverworts bHLH transcription factor involved in the regulation of bisbibenzyls and flavonoids biosynthesis[J]. BMC Plant Biology,2019,19(1):497. doi: 10.1186/s12870-019-2109-z
[56]DENG C Y, WANG J Y, LU C F, et al. CcMYB6-1 and CcbHLH1, two novel transcription factors synergistically involved in regulating anthocyanin biosynthesis in cornflower[J]. Plant Physiology and Biochemistry,2020,151:271?283. doi: 10.1016/j.plaphy.2020.03.024
[57]WANG F B, ZHU H, CHEN D H, et al. A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana[J]. Plant Cell, Tissue and Organ Culture,2016,125(2):387?398. doi: 10.1007/s11240-016-0953-1
[58]XU H F, WANG N, LIU J X, et al. The molecular mechanism underlying anthocyanin metabolism in apple using the MdMYB16 and MdbHLH33 genes[J]. Plant Molecular Biology,2017,94(1-2):149?165. doi: 10.1007/s11103-017-0601-0
[59] 姚攀鋒. 苦蕎WD40轉(zhuǎn)錄因子的基因克隆及其對(duì)花青素合成的影響[D]. 雅安: 四川農(nóng)業(yè)大學(xué), 2016.YAO P F. Characterization of tartary buckwheat WD40 transcription factor and its regulation of anthocyanin biosynthesis[D]. Yaan: Sichuan Agricultural University, 2016.
[60]LIU Z, LIU Y H, COULTER J A, et al. The WD40 gene family in Potato (Solanum Tuberosum L.): Genome-wide analysis and identification of anthocyanin and drought-related WD40s[J]. Agronomy,2020,10(3):401. doi: 10.3390/agronomy10030401
[61]AN X H, TIAN Y, CHEN K Q, et al. The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation[J]. Journal of Plant Physiology,2012,169(7):710?717. doi: 10.1016/j.jplph.2012.01.015
[62] 陳 倩, 游雙梅, 邢樂(lè)華, 等. 果樹(shù)NAC轉(zhuǎn)錄因子的研究進(jìn)展[J/OL]. 分子植物育種, http://kns.cnki.net/kcms/detail/46.1068.S.20200918.1316.007.html.CHEN Q, YOU S M, XING L H, et al. Research progress of nac transcription factors in fruit trees[J/OL]. Molecular Plant Breeding, http://kns.cnki.net/kcms/detail/46.1068.S.20200918.1316.007.html.
[63]SUN Q G, JIANG S H, ZHANG T L, et al. Apple NAC transcription factor MdNAC52 regulates biosynthesis of anthocyanin and proanthocyanidin through MdMYB9 and MdMYB11[J]. Plant Science,2019,289:110286. doi: 10.1016/j.plantsci.2019.110286
[64]JIANG G X, LI Z W, SONG Y B, et al. LcNAC13 physically interacts with LcR1MYB1 to coregulate anthocyanin biosynthesis-related genes duringLitchi Fruit Ripening[J]. Biomolecules,2019,9(4):135. doi: 10.3390/biom9040135
[65]H J Y, H L C, D. Y, et al. Y, et al. MdHB1 down-regulation activates anthocyanin biosynthesis in the white-fleshed apple cultivar 'Granny Smith'[J]. Journal of Experimental Botany,2017,68(5):1055?1069. doi: 10.1093/jxb/erx029
[66]SHI H T, LIU G Y, WEI Y X, et al. The zinc-finger transcription factor ZAT6 is essential for hydrogen peroxide induction of anthocyanin synthesis in Arabidopsis[J]. Plant Molecular Biology,2018,97(1-2):165?176. doi: 10.1007/s11103-018-0730-0
相關(guān)知識(shí)
黃酮類(lèi)化合物在植物中起什么作用
植物類(lèi)胡蘿卜素代謝調(diào)控的研究進(jìn)展
植物蛋白肉研究進(jìn)展
植物萜類(lèi)次生代謝和其調(diào)控
番石榴果實(shí)品質(zhì)評(píng)價(jià)及黃酮類(lèi)化合物合成相關(guān)基因挖掘
汪麗萍:全谷物中生理活性物質(zhì)的研究進(jìn)展與展望
植物化學(xué)物質(zhì)的植物化學(xué)物質(zhì)與保健品研發(fā)
生物代謝調(diào)控與治療研究室
植物精油無(wú)抗養(yǎng)殖與動(dòng)物腸道健康研究進(jìn)展—武瑞教授
茶多酚(多羥基類(lèi)化合物)
網(wǎng)址: 植物類(lèi)黃酮化合物生物合成調(diào)控研究進(jìn)展 http://www.u1s5d6.cn/newsview460489.html
推薦資訊
- 1發(fā)朋友圈對(duì)老公徹底失望的心情 12775
- 2BMI體重指數(shù)計(jì)算公式是什么 11235
- 3補(bǔ)腎吃什么 補(bǔ)腎最佳食物推薦 11199
- 4性生活姿勢(shì)有哪些 盤(pán)點(diǎn)夫妻性 10425
- 5BMI正常值范圍一般是多少? 10137
- 6在線基礎(chǔ)代謝率(BMR)計(jì)算 9652
- 7一邊做飯一邊躁狂怎么辦 9138
- 8從出汗看健康 出汗透露你的健 9063
- 9早上怎么喝水最健康? 8613
- 10五大原因危害女性健康 如何保 7826