首頁 資訊 全谷物食品重要膳食纖維組分 ——谷物β

全谷物食品重要膳食纖維組分 ——谷物β

來源:泰然健康網(wǎng) 時間:2024年12月15日 17:59

摘 要:近年來,β-葡聚糖因其顯著的健康功效和良好的功能特性,被廣泛應(yīng)用到各類食品的生產(chǎn)中。β-葡聚糖存在于燕麥、大麥、青稞和小麥等多種谷物中,不同谷物源其含量、分布、結(jié)構(gòu)、功能特性和生理活性有所不同,進而影響在食品加工中的應(yīng)用。從制備方法、營養(yǎng)、理化性質(zhì)、功能特性和健康功效等多方面闡述谷物 β-葡聚糖及其多糖、脂質(zhì)、蛋白復(fù)合物的食品相關(guān)研究現(xiàn)狀,歸納谷物 β-葡聚糖目前在食品應(yīng)用中面臨的問題,以期為谷物β-葡聚糖進一步的開發(fā)利用提供參考。

谷物是東方膳食的重要組成部分,與精制谷物相比,全谷物保留了更多麩皮和胚芽,含有豐富的營養(yǎng)成分,特別是膳食纖維、微量營養(yǎng)素和多酚等植物化學(xué)物。許多證據(jù)表明食用全谷物對平衡膳食,降低Ⅱ型糖尿病、心血管疾病及結(jié)直腸癌等慢性疾病有極大改善作用[1]。因此,鼓勵以全谷物食品代替精制谷物食品是改善居民膳食營養(yǎng)的重要途徑。膳食纖維是全谷物食品中重要的功能性組分,調(diào)查顯示,膳食中谷物來源的膳食纖維對人體健康作用大于其它來源的膳食纖維,這與其結(jié)構(gòu)差異有關(guān)[2]。β-葡聚糖是一種重要的谷物膳食纖維組分,在于胚乳細胞壁中,是由D-葡萄糖單體間經(jīng) β-(1→3)和 β-(1→4)糖苷鍵混合連接的多糖[3],在大麥(2.5%~11.3%)燕麥(2.2%~7.8%)中含量最高,黑麥(1.2%~2.0%)和小麥(0.4%~1.4%)中也含有較少量 β-葡聚糖[4]。

近年來,隨著公眾對營養(yǎng)健康關(guān)注度的提高,全谷物食品消費量不斷增加,特別是基于美國FDA和歐盟對β-葡聚糖功效的健康聲稱,使得富含β-葡聚糖的燕麥大麥等食品的消費量也逐年增加,國內(nèi)外對谷物β-葡聚糖相關(guān)研究深度和廣度都有了極大拓展,研究從β-葡聚糖提取分離純化方法的多樣化;食品加工和處理技術(shù)對于β-葡聚糖結(jié)構(gòu)和性質(zhì)的影響;β-葡聚糖與蛋白質(zhì)、脂質(zhì)等物質(zhì)之間相互作用;β-葡聚糖在不同類型食品中的應(yīng)用以及β-葡聚糖營養(yǎng)健康功效的研究等,為此,本論文針對谷物β-葡聚糖近年研究進展進行了綜述。

1 谷物β-葡聚糖的提取制備及純化

谷物 β-葡聚糖主要存在于籽粒的亞糊粉層和胚乳細胞壁中,谷物β-葡聚糖的性質(zhì)及應(yīng)用主要基于其分子結(jié)構(gòu)特征。提取條件不僅影響β-葡聚糖提取率,也影響其分子結(jié)構(gòu),因此,近年來大量文獻報道了對谷物β-葡聚糖的提取、分離以及純化方法。綜述文獻發(fā)現(xiàn)[5-6],目前提取谷物 β-葡聚糖主要的方法均源于 Wood等[7]的研究,基本步驟如圖1所示。隨后,在此基礎(chǔ)上研究者分別針對不同谷物原料、前期提取條件、影響得率和純度的因素等進行了深入的研究(見表1)。目前,用于提取谷物β-葡聚糖的主要原料包括大麥、青稞、燕麥及燕麥麩皮。從大麥及青稞中提取β-葡聚糖提取率較高,而使用燕麥及燕麥麩皮作為原料提取率較低,這與谷物中β-葡聚糖的分布相關(guān)。比較不同提取方法,發(fā)現(xiàn)不同方法提取β-葡聚糖提取率約在 50%~87%之間,得率約在5%~8.5%之間,酶法提取的提取率相對較高,而微波輔助提取法得率相對較高。此外,Ahmada等[3]報道,酶法提取得到的谷物 β-葡聚糖產(chǎn)品穩(wěn)定性和功能特性均較好。然而,提取是個復(fù)雜的過程,不僅要關(guān)注產(chǎn)率,更要關(guān)注功能和產(chǎn)品穩(wěn)定性等;因此,谷物β-葡聚糖的提取,特別是工業(yè)化制備方面在技術(shù)和產(chǎn)品質(zhì)量指標穩(wěn)定性和能耗方面還需要綜合考慮。

表1 谷物β-葡聚糖提取部分研究方法
Table 1 The partial research methods of cereal β-glucan extraction

圖1 谷物β-葡聚糖常規(guī)提取辦法
Fig.1 The conventional extraction method of cereal β-glucan

2 谷物β-葡聚糖功能性質(zhì)的深入解析及在食品中的應(yīng)用

近年來,隨著對于谷物 β-葡聚糖健康作用的了解以及對其分子特性研究的不斷深入,許多研究者更加關(guān)注β-葡聚糖的結(jié)構(gòu)和功能特性與應(yīng)用前景的關(guān)系。楊成峻等[20]綜述了燕麥β-葡聚糖結(jié)構(gòu)與物理特性、營養(yǎng)特性以及在肉類食品、烘焙食品和飲料行業(yè)食品應(yīng)用;Izydorczyk[21]綜述了大麥β-葡聚糖分子結(jié)構(gòu)、理化特性及其在食品中的應(yīng)用。食品工業(yè)中β-葡聚糖主要包括面制品、乳品、飲料、肉制品和休閑食品等(見表2),近年來,谷物β-葡聚糖的應(yīng)用研究不斷增多,一方面將β-葡聚糖添加在不同的食品中,研究對食品體系組分性質(zhì)和食品品質(zhì)的影響;另一方面,基于β-葡聚糖與食品體系中不同分子之間的相互作用,研究β-葡聚糖復(fù)合物的功能性質(zhì)與應(yīng)用。為此,本論文以β-葡聚糖在面制品中應(yīng)用為例,概述β-葡聚糖添加對面團特性和食品品質(zhì)的影響;同時,對β-葡聚糖復(fù)合物的研究及應(yīng)用進行了綜述。

表2 谷物β-葡聚糖在食品中的應(yīng)用
Table 2 The application of cereal β-glucan in food

食物類別 β-葡聚糖來源 食品 應(yīng)用功能 參考文獻燕麥 燕麥和全麥面包 β-葡聚糖分子量和粘度在不同發(fā)酵時間的效果評價Gamel T H, 2014[22]大麥、燕麥 大米面團和面包 將葡聚糖添加到面包中研究其流變特性 Perez-Quirce S, 2015[23]燕麥 面條 提高面團的蒸煮產(chǎn)量、粘合力和延展性 Inglett G E, 2005[24]面制品大麥 富含大麥β-葡聚糖的粗麥粉 富含功能性成分的混合粗麥粉 Messia M C, 2018[25]燕麥 橙味飲料 在飲料中用作功能性成分 Liu Nian, 2018[26]燕麥 藜麥乳 良好的乳化穩(wěn)定劑 Huang K, 2021[27]大麥、燕麥 乳液 葡聚糖在乳液中用作乳化劑、穩(wěn)定劑 Karp S, 2019[28]燕麥 脫脂奶 用作脂肪替代品images/BZ_46_1892_2571_2151_2610.png[29]燕麥、大麥 發(fā)酵乳 用作功能性成分增加產(chǎn)品的膳食纖維和益生作用Lazaridou A, 2007[30]飲品大麥 酸奶 含有 β-葡聚糖的酸奶具有高粘度、高氨基酸含量的功能Rinaldi L, 2015[31]燕麥 肉類 以不同濃度添加到肉類中改善其質(zhì)地及增加其營養(yǎng)功能Smvm A, 2018[32]燕麥 香腸 β-葡聚糖與抗性淀粉的相互作用可以提高蒸煮產(chǎn)量特性和整體可接受性Sarteshniz R A, 2015[33]大麥 膨化零食 含有 β-葡聚糖的產(chǎn)品具有更好的質(zhì)構(gòu)特性和低血糖生成指數(shù)Brennan M A, 2013[34]膨化食品及肉類燕麥 肉丸 脂肪替代品,改善肉丸質(zhì)地 Pinero M P, 2008[35]

2.1 β-葡聚糖在面制品食品中的應(yīng)用

β-葡聚糖添加到面制品中,一方面可以增加產(chǎn)品的水溶性膳食纖維含量;另一方面影響面團流變特性、水合特性以及產(chǎn)品質(zhì)地等。研究表明適量添加燕麥β-葡聚糖(OG)能夠改善面團流變學(xué)特性,添加0.5%~5.0%的OG于低筋、中筋和高筋面粉及饅頭專用粉中,隨著添加量增加,4種面粉面團的吸水率、形成時間和穩(wěn)定時間均增大;0.5%~1.0%的OG添加量能使低筋面粉的拉伸特性接近饅頭專用面粉;OG能使中筋面粉的糊化溫度稍有升高,但亦能降低饅頭專用粉糊化溫度及4種面粉的最終黏度、衰減值和回生值[36]。也有研究表明,β-葡聚糖的添加對面團有劣化作用,當添加大麥β-葡聚糖(BG)≥0.5%,小麥面團抗延伸阻力增加,面團形成時間、穩(wěn)定時間、弱化度(值)及延伸性均顯著降低;β-葡聚糖添加量≥1.5%時,小麥粉面包比容明顯減小、硬度增大、彈性降低[37]。

β-葡聚糖還通過影響面團水合特性而影響產(chǎn)品品質(zhì)。研究表明,OG添加在面條和饅頭中可抑制水分遷移和淀粉老化,減少失水率和烹調(diào)損失[38-39]。含 OG 70%的水溶性膳食纖維添加到小麥粉中,通過優(yōu)化含水量,可以得到和白面包類似質(zhì)構(gòu)的富含可溶性膳食纖維(SDF)的面包[40]。β-葡聚糖對面團水合特性的影響與其分子大小等精細結(jié)構(gòu)有關(guān)[41]。Skendi等[42]研究了兩種不同相對分子質(zhì)量(1.00×105 和 2.03×105)BG 對兩種小麥粉面團流變學(xué)、黏彈性和面包品質(zhì)的影響,結(jié)果表明,兩種分子量BG均能增加面團的彈性、抗變形性和流動性,其中低分子量 BG 添加到低筋小麥粉中得到與高筋小麥粉品質(zhì)類似的面粉。Rieder等[43]指出高分子量的β-葡聚糖能增加面團水相粘度,穩(wěn)定氣孔;但Gill等[44]則指出高分子量的β-葡聚糖會對面團造成更為不利的影響,使面團的抗延展性更高,膨脹性更低。這是由于高分子量β-葡聚糖遇水產(chǎn)生高粘性凝膠,附著在面筋蛋白表面,與面筋蛋白競爭水分,影響面筋網(wǎng)絡(luò)結(jié)構(gòu)的形成與穩(wěn)定性[45]。

2.2 β-葡聚糖復(fù)合物理化性質(zhì)及在食品中應(yīng)用

近年來,對谷物β-葡聚糖的研究已經(jīng)拓展到其與其它大分子復(fù)合物理化性質(zhì)的研究與應(yīng)用領(lǐng)域。

2.2.1 β-葡聚糖多糖復(fù)合物

β-葡聚糖具有一定的凝膠性,與多糖復(fù)配可以增強其凝膠性。魔芋葡甘露聚糖與β-葡聚糖的相互作用能夠通過氫鍵吸附和包埋β-葡聚糖分子而顯著增強復(fù)合凝膠的流動性、持水性、黏彈性、內(nèi)聚性及貯藏穩(wěn)定性,但對硬度有明顯降低作用[43]。因此,添加適量魔芋葡甘露聚糖可增加β-葡聚糖在涂抹性食品中的應(yīng)用潛力。燕麥淀粉中添加β-葡聚糖后也可以通過氫鍵連接形成均勻致密的網(wǎng)絡(luò)結(jié)構(gòu),β-葡聚糖對淀粉結(jié)晶區(qū)有一定的保護作用,在超高壓處理條件下可形成晶核,抑制淀粉老化[44]。大麥β-葡聚糖與小麥淀粉復(fù)配,也會通過氫鍵結(jié)合在淀粉顆粒表面,促進吸水膨脹和直鏈淀粉有序化排列并增加了直鏈淀粉的重均相對分子質(zhì)量[46]。

β-葡聚糖具有一定的凝膠性,與多糖復(fù)配可以增強其凝膠性,進一步影響食品的加工品質(zhì)。研究表明魔芋葡甘露聚糖與β-葡聚糖的相互作用能夠通過氫鍵吸附和包埋β-葡聚糖分子而顯著增強復(fù)合凝膠的流動性、持水性、黏彈性、內(nèi)聚性及貯藏穩(wěn)定性,但對硬度有明顯降低作用。魔芋甘露聚糖與β-葡聚糖復(fù)合,可增加β-葡聚糖在涂抹性食品中的應(yīng)用潛力[47]。β-葡聚糖添加到燕麥淀粉中可通過氫鍵連接形成均勻致密的網(wǎng)絡(luò)結(jié)構(gòu),β-葡聚糖對淀粉結(jié)晶區(qū)有一定的保護作用,在超高壓處理條件下可形成晶核,抑制淀粉老化[48]。大麥β-葡聚糖能夠促進小麥淀粉的溶脹和糊化,BBG提高通過氫鍵結(jié)合在淀粉顆粒表面,促進吸水膨脹和直鏈淀粉有序化排列并增加了直鏈淀粉的重均相對分子質(zhì)量,形成復(fù)合凝膠降低冷藏過程中的硬度和熱焓值,延緩小麥淀粉的長期回生[49]。采用噴霧干燥法,大麥β-葡聚糖復(fù)合改性玉米淀粉微膠囊可以包裹魚油(EPA),防止魚油氧化[50]。

2.2.2 β-葡聚糖脂質(zhì)復(fù)合物

食品體系中,谷物 β-葡聚糖可能與其中的不同脂質(zhì)結(jié)合形成復(fù)合物,對親脂性小分子有一定荷載作用,可以促進其靶向釋放,提高生物可利用率。利用飽和脂肪酸硬脂酸對燕麥β-葡聚糖進行疏水改性,可以獲得燕麥β-葡聚糖硬脂酸酯,并用于負載楊梅素,在燕麥β-葡聚糖硬脂酸酯的濃度為1.5 mg/mL,燕麥β-葡聚糖硬脂酸酯與楊梅素添加比例1∶1,在12 Kr/min均質(zhì)速度下均質(zhì) 3 min,復(fù)合物中楊梅素的荷載量能夠達到55.86 μg/mg,并對楊梅素有一定緩釋作用[46]。燕麥β-葡聚糖與辛烯基琥珀酸酐(OS)通過酯化反應(yīng)可獲得 OS-燕麥 β-葡聚糖酯(OSβG),不同取代度和重均分子質(zhì)量的OSβG能夠自聚集成表面帶負電荷、粒徑為175~600 nm的球形膠束,并具有載荷姜黃素作用,取代度為0.019 9和重均分子質(zhì)量為1.68×105 g/mol的OSβG能夠荷載姜黃素(4.21±0.16) μg/mg[51];但食品中的氨基酸對 OSβG載荷姜黃素的穩(wěn)定性有一定影響[52]。辛烯基琥珀酸酐與青稞β-葡聚糖形成的復(fù)合酯,以此作為壁材,黑果枸杞花青素作為芯材,在水相體系中可以包埋46%的花青素作用,花青素微膠囊在低溫和較低 pH條件下較穩(wěn)定,且對氧化降解有一定的保護作用[53]。

2.2.3 β-葡聚糖蛋白質(zhì)復(fù)合物

谷物 β-葡聚糖與蛋白質(zhì)相互作用,可以增強其功能特性,拓寬β-葡聚糖的應(yīng)用范圍,也為富含β-葡聚糖食品的精準加工和精準營養(yǎng)提供了新的思路。大麥β-葡聚糖(BG)與面筋蛋白可在水相分散系中產(chǎn)生直接相互作用,當水分過量時,BG通過增加面筋蛋白在水相中對弱結(jié)合水的束縛能力而增加了面筋蛋白的持水性和可凍結(jié)水含量,弱化面筋蛋白交聯(lián);利用BG對小麥面筋蛋白進行糖基化改性,能顯著提高小麥蛋白的溶解度和乳化性和起泡性,這些結(jié)果為大麥β-葡聚糖復(fù)合小麥蛋白作為脂肪模擬物的制備和應(yīng)用提供了新思路[12,54]。燕麥β-葡聚糖(OG)和乳鐵蛋白在 25 ℃和 90 ℃條件下能夠改變?nèi)殍F蛋白的二級結(jié)構(gòu)形成自組裝體和熱聚集體,熱處理后形成球形顆粒,進一步噴霧干燥,能夠用于運載姜黃素[55]。燕麥β-葡聚糖與大豆分離蛋白可以通過氫鍵相互作用,增強混合凝膠的乳化性和凝膠性,并提高混合凝膠的玻璃化轉(zhuǎn)變溫度(Tg)和熱穩(wěn)定性[56]。將不同濃度(0.25%~1%)的燕麥 β-葡聚糖添加到4%的肌原纖維蛋白溶液中,于80 ℃的溫度條件下加熱20 min制成復(fù)合凝膠,能顯著提高肌原纖維蛋白凝膠保水性、凝膠硬度和肌原纖維蛋白粘彈性[57];香腸中加入大麥β-葡聚糖可以使肌肉蛋白質(zhì)形成更緊密的網(wǎng)絡(luò)結(jié)構(gòu)而提高香腸持水性和蛋白質(zhì)變性溫度[58],這些研究為富含β-葡聚糖的肉糜制品的研發(fā)提供了理論依據(jù)。近年來,植物基飲品或奶制品產(chǎn)品的消費呈現(xiàn)不斷增長的趨勢,牛奶中添加高分子量的燕麥β-葡聚糖可以降低牛奶的能量并具有降膽固醇的作用,因此,β-葡聚糖與牛乳蛋白相互作用的研究也較多,β-葡聚糖添加對牛乳體系的粘度、產(chǎn)品的流動性和穩(wěn)定性都會產(chǎn)生一定的影響。酸凝固酪蛋白酸鈉和BG混合凝膠在微觀水平上存在相分離,在β-葡聚糖低濃度(3% w/w)時混合體系的特性受控于蛋白質(zhì)的組成,但隨著多糖濃度的增加,混合體系凝膠強度和熱穩(wěn)定性則受到多糖結(jié)構(gòu)的影響,即酸化脫脂牛奶凝膠中包含 BG可削弱蛋白質(zhì)網(wǎng)絡(luò)結(jié)構(gòu)[58]。多糖分子量變化也會引起蛋白質(zhì)/多糖混合體系的相分離,OG和酪蛋白酸納混合體系產(chǎn)生相分離現(xiàn)象所需的OG含量取決于自身分子量,當 OG 相對分子質(zhì)量(Mr)由 3.5×104增大到6.5×104時,其所需含量由2%~ 2.5%(w/w)減少到 1%~1.5%(w/w)即可表現(xiàn)出熱力學(xué)不相容性[59]。在熱動力學(xué)平衡的狀態(tài)下,混合體系中低分子量β-葡聚糖的粘度是影響體系平衡狀態(tài)的因素,依賴于蛋白質(zhì)濃度變化高分子量β-葡聚糖能夠迅速聚集[60]。BG(產(chǎn)品名 GLucagel)對脫脂牛奶相分離的驅(qū)動力是在多糖分子中酪蛋白膠粒的絮凝損耗,隨著酪蛋白膠粒容積率和大麥GLucagel濃度的不同,兩相體系或者由于瞬時凝膠態(tài)或形成沉淀而分離,較高濃度的β-葡聚糖可以提高酪蛋白膠粒的容積率[61]。因此,牛奶蛋白與β-葡聚糖的熱力學(xué)不相容性以及相分離是對產(chǎn)品的一個很大的挑戰(zhàn)。

3 谷物β-葡聚糖的營養(yǎng)研究

谷物 β-葡聚糖作為一類重要的水溶性膳食纖維,近年來對β-葡聚糖及其食品的消化、吸收、轉(zhuǎn)運與代謝與健康功能相關(guān)的研究都有了不斷的深入,特別是從β-葡聚糖分子特性與精準營養(yǎng)相關(guān)性方面,研究報道都有了縱深的發(fā)展。主要的研究內(nèi)容見表3。β-葡聚糖的營養(yǎng)功能主要包括對胃腸道健康的影響、降血糖、降脂減肥、改善腸道菌群、抗氧化與抗炎、免疫促進以及部分抗癌功能。這些研究從β-葡聚糖原料來源、加工方式、分子大小或粘度高低等方面,采用體內(nèi)外研究等多種不同對象,從生化指標、代謝調(diào)控以及代謝組學(xué)、基因組學(xué)和轉(zhuǎn)錄組學(xué)等多方面對營養(yǎng)功效進行表征。這些研究不僅從理論上詮釋了β-葡聚糖的營養(yǎng)作用,也為未來研發(fā)新型健康食品提供了科學(xué)依據(jù)。

表3 谷物β-葡聚糖的營養(yǎng)研究概況
Table 3 General situation on nutrition research for cereal β-glucan

4 結(jié)論

谷物 β-葡聚糖作為全谷物食品中明顯具有健康功效的膳食纖維組分,已被從多種谷物及其副產(chǎn)品(麩皮等)中單獨提取純化,并應(yīng)用于各類食品的生產(chǎn)中。向食品中添加谷物β-葡聚糖,不僅可以增加食品的膳食纖維含量,提高其健康功效,同時可利用谷物β-葡聚糖自身黏度、凝膠特性和流動特性等功能特性改善食品品質(zhì)。因此,谷物β-葡聚糖已經(jīng)成為健康食品領(lǐng)域的炙手可熱的原料或食品配料之一。然而,目前雖然已有多項研究關(guān)注如何提高β-葡聚糖提取率及純度,但工藝條件仍然局限在實驗室規(guī)模,缺乏適合工業(yè)化生產(chǎn)的提取純化工藝,這仍然是制約谷物β-葡聚糖進一步產(chǎn)業(yè)化發(fā)展的主要因素。此外,目前谷物β-葡聚糖與淀粉、蛋白質(zhì)、脂質(zhì)等其他大分子形成的復(fù)合物的功能特性研究及在食品中的應(yīng)用成為該領(lǐng)域新的研究熱點,但是復(fù)合后谷物β-葡聚糖的健康功效及作用機制與單純谷物β-葡聚糖相比差異如何,這也是值得進一步研究的科學(xué)問題。

參考文獻:

[1]MCRAE M P. Health benefits of dietary whole grains: an umbrella review of meta-analyses[J]. Journal of Chiropractic Medicine, 2017, 16(1): 10-18.

[2]HUANG T, XU M, LEE A, et al. Consumption of whole grains and cereal fiber and total and cause-specific mortality:prospective analysis of 367, 442 individuals[J]. BMC Med,2015, 13(1): 59-68.

[3]AHMADA A, ANJUMB F M, ZAHOOR T, et al. Extraction and characterization of β-d-glucan from oat for industrial utilization[J]. International Journal of Biological Macromolecules, 2010,46: 304-309.

[4]BARRETT E M, PROBST Y C, BECK E J. Creation of a database for the estimation of cereal fibre content in foods[J].Journal of Food Composition & Analysis, 2018, 66: 1-6.

[5]申瑞玲, 姚惠源. 谷物 β-葡聚糖提取和純化[J]. 糧食與油脂,2003, (7): 19-21.SHEN R L, YAO H Y. Extraction and purification of the β-glucans in grains[J]. Cereals & Oils, 2003, (7): 19-21.

[6]孟續(xù), 李言, 錢海峰, 等. 燕麥β-葡聚糖的提取制備及純化研究進展[J]. 食品與發(fā)酵工業(yè), 2021, 47(21): 268-274.MENG X, LI Y, QIAN H F, et al. Research progress on extraction, preparation and purification of oat β-glucan[J]. Food and Fermentation Industries, 2021, 47(21): 268-274.

[7]WOOD P J, SIDDIQUI I R, PATON D. Extraction of high-viscosity gums from oats.[J]. Cereal Chemistry, 1978,55(6): 1038-1049.

[8]MISHRA N, MISHRA N, MISHRA P. Influence of different extraction methods on physiochemical and biological properties of β-glucan from indina barley varieties[J]. Carpathian Journal of Food Science and Technology, 2020, 12(1): 27-39.

[9]BENITO-ROMáN ó, ALONSO E, GAIROLA K, et al. Fixedbed extraction of β-glucan from cereals by means of pressurized hot water[J]. The Journal of Supercritical Fluids, 2013, 82:122-128.

[10]顧飛燕. 青稞 β-葡聚糖的提取及其在化妝品中的應(yīng)用[D]. 上海應(yīng)用技術(shù)大學(xué), 2018.GU F Y. Extraction of β-glucan from highland barley and its application in cosmetics[D]. Shanghai Institute of Technology,2018.

[11]劉新琦, 何先喆, 劉潔純, 等.發(fā)酵法提取青稞麩皮中 β-葡聚糖的工藝優(yōu)化及其理化性質(zhì)研究[J]. 食品工業(yè)科技, 2020,41(7): 49-54.LIU X Q, HE X Z, LIU C J, et al. Study on optimization of extraction process of barley bran β-glucan by fermentation and its physicochemical properties[J]. Science and Technology of Food Industry, 2020, 41(7): 49-54.

[12]黃澤華. 大麥 β-葡聚糖微凝膠熱誘導(dǎo)融滲影響小麥蛋白交聯(lián)的機理及應(yīng)用[D]. 江南大學(xué), 2019.HUANG Z H. Study on the effect of thermally induced infiltration of barley β-glucan microgel on wheat protein aggregation and the application[D]. Jiangnan University, 2019.

[13]申瑞玲. 燕麥 β-葡聚糖的提取純化及功能特性研究[D]. 江南大學(xué), 2005.SHEN R L. Study on the extraction, purification and characterization of oat β-glucan[D]. Jiangnan University, 2005.

[14]YOO H U, KO M J, CHUNG M S. Hydrolysis of beta-glucan in oat flour during s-ubcritical-water extraction[J]. Food Chemistry,https://doi.org/10.1016/j.foodchem.2019.125670.

[15]SIBAKOV J, ABECASSIS J, BARRON C, et al. Electrostatic separation combined with ultra-fine grinding to produce betaglucan enriched ingredients from oat bran[J]. Innovative Food Science & Emerging Technologies, 2014, 26: 445-455.

[16]申瑞玲, 何俊, 趙學(xué)偉. 谷物β-葡聚糖的提取方法、化學(xué)結(jié)構(gòu)及功能性質(zhì)研究進展[J]. 食品科學(xué), 2009, 30(3): 288-291.SHEN R L, HE J, ZHAO X W. Research progress of extraction technology, chemical structure and functional properties of cereal β-D-glucan[J]. Food Science, 2009, 30(3): 288-291.

[17]吳迪, 邴雪, 王昌濤, 等. 雙向發(fā)酵提取燕麥β-葡聚糖及其理化性質(zhì)研究[J]. 食品研究與開發(fā), 2019, 40(1): 184-193.WU D, BING X, WANG C T. Bidirectional fermentation of oat β-glucan and research of physical and chemical properties[J].Food Research and Development, 2019, 40(1): 184-193.

[18]黃玉炎, 柴小巖, 何桀, 等. 超聲輔助凍融法提取燕麥麩β-葡聚糖[J]. 食品研究與開發(fā), 2021, 42(3): 68-72.HUANG Y Y, CAI X Y, HE J, et al. Ultrasonic assisted freeze-thaw extraction of β-glucan from oat bran[J]. Food Research and Development, 2021, 42(3): 68-72.

[19]李密轉(zhuǎn), 路文秀, 李名立, 等. 超聲波聯(lián)合酶法提取燕麥麩皮β-葡聚糖的工藝優(yōu)化[J]. 貴州農(nóng)業(yè)科學(xué), 2020, 48(11): 91-95.LI M Z, LU W X, LI M L, et al. Optimization on extraction process of oat bran β-glucan by ultrasonic combined with enzymatic method[J]. Guizhou Agricultural Sciences, 2020,48(11): 91-95.

[20]楊成峻, 陳明舜, 戴濤濤, 等. 燕麥 β-葡聚糖功能與應(yīng)用研究進展[J]. 中國食品學(xué)報, 2021, 21(6): 301-311.YANG C J, CHEN M S, DAI T T, et al. Research advances in functional properties and application of oat β-glucan[J]. Journal of Chinese Institute of Food Science and Technology, 2021,21(6): 301-311.

[21]IZYDORCZYK M S, DEXTER J E. Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties,and uses in food products-a review[J]. Food Research International, 2008, 41(9): 850-868.

[22]GAMEL T H, ABDEL-AAL E, AMES N P, et al. Enzymatic extraction of beta-glucan from oat bran cereals and oat crackers and optimization of viscosity measurement[J]. Journal of Cereal Science, 2014, 59(1): 33-40.

[23]PEREZ-QUIRCE S, RONDA F, LAZARIDOU A, et al. Effect of barley and oat beta-glucan concentrates on gluten-free rice-based doughs and bread characteristics[J]. Food hydrocolloids, 2015,48: 197-207.

[24]INGLETT G E, PETERSON S C, CARRIERe C J, et al.Rheological, textural, and sensory properties of Asian noodles containing an oat cereal hydrocolloid[J]. Food Chemistry, 2005,90(1-2): 1-8.

[25]MESSIA M C, ORIENTE M, ANGELICOLA M, et al.Development of functional couscous enriched in barley βglucans[J]. Journal of Cereal Science, 2018, 85: 137-142.

[26]LIU N, NGUYEN H, WISMER W, et al. Development of an orange-flavoured functional beverage formulated with betaglucan and coenzyme Q10-impregnated beta-glucan[J]. Journal of Functional Foods, 2018, 47: 397-404.

[27]HUANG K, ZHANG S R, GUAN X, et al. Effect of the oat βglucan on the development of functional quinoa (Chenopodium quinoa wild) milk[J]. Food Chemistry, https://doi.org/10.1016/j.foodchem.2021.129201.

[28]KARP S, WYRWISZ J, KUREK M A. Comparative analysis of the physical properties of o/w emulsions stabilised by cereal β-glucan and other stabilisers[J]. International Journal of Biological Macromolecules, 2019, 132: 236-243.

[29]SHARAFBAFI N, TOSH S M, ALEXANDER M, et al. Phase behaviour, rheological properties, and microstructure of oat β-glucan-milk mixtures[J]. Food Hydrocolloids, 2014, 41:274-280.

[30]LAZARIDOU A, BILIADERIS C G. Molecular aspects of cereal β-glucan functionality: Physical properties, technological applications and physiological effects[J]. Journal of Cereal Science, 2007, 46(2): 101-118.

[31]RINALDI L, RIOUX L E, BRITTEN M, et al. In vitro bioaccessibility of peptides and amino acids from yogurt made with starch, pectin, or β-glucan[J]. International Dairy Journal,2015, 46: 39-45.

[32]MEJIA S M V, FRANCISCO A D, BARRETO P L M, et al.Incorporation of β-glucans in meat emulsions through an optimal mixture modeling systems[J]. Meat Science, 2018, 143: 210-218.

[33]SARTESHNIZ R A, HOSSEINI H, BONDARIANZADEH D, et al. Optimization of prebiotic sausage formulation: Effect of using beta-glucan and resistant starch by D-optimal mixture design approach[J]. LWT-Food Science & Technology, 2015,62(1): 704-710.

[34]BRENNAN M A, DERBYSHIRE E, TIWARI B K. Integration of β-glucan fibre rich fractions from barley and mushrooms to form healthy extruded snacks[J]. Plant Foods for Human Nutrition, 2013, 68(1): 78-82.

[35]PINERO M P, PARRA K, HUERTA-LEIDENZ N, et al. Effect of oat's soluble fibre (β-glucan) as a fat replacer on physical,chemical, microbiological and sensory properties of low-fat beef patties[J]. Meat Science, 2008, 80(3): 675-680.

[36]潘利華, 徐婷婷, 羅水忠, 等. 適量燕麥β-葡聚糖改善面團流變學(xué)特性[J]. 農(nóng)業(yè)工程學(xué)報, 2015, 31(18): 304-310.PAN L H, XU T T, LUO S Z, et al. Appropriate addition of oat β-glucan improving rheological properties of dough[J].Transactions of the Chinese Society of Agricultural Engineering,2015, 31(18): 304-310.

[37]李真. 大麥粉對面團特性和面包烘焙品質(zhì)的影響及改良劑研究[D]. 江蘇大學(xué), 2014.LI Z. Effect of barley flour on dough properties and bread quality and its improver study[D]. Jiangsu University, 2014.

[38]NGUYEN T T L, FLANAGANB B M, TAO K. Effect of processing on the solubility and molecular size of oat β-glucan and consequences for starch digestibility of oat-fortified noodles[J].Food Chemistry. https://doi.org/10.1016/ j.foodchem.2021.131291.

[39]XU S Y, GONG Y Y, RAFIQUE H. et, al. Effect of oat β-glucan addition on the staling properties of wheat-oat blended flour Chinese steamed bread[J]. Bioactive Carbohydrates and Dietary Fibre, https://doi.org/10.1016/j.bcdf.2021.100285.

[40]ERIVE M O, HE F, WANG T, et al. Development of β-glucan enriched wheat bread using soluble oat fiber[J]. Journal of Cereal Science, 2020, 95: 103051.

[41]RONDA F, PEREZ-QUIRCE S, LAZARIDOU A, et al. Effect of barley and oat β-glucan concentrates on gluten-free rice based doughs and bread characteristics[J]. Food Hydrocolloids, 2015,48: 197-207.

[42]SKENDI A, BILIADERIS C G, PAPAGEORGIOU M, et al.Effects of two barley β-glucan isolates on wheat flour dough and bread properties[J]. Food Chemistry, 2010, 119(3): 1159-1167.

[43]RIEDER A, HOLTEKJ LEN A K., SAHLSTR M S, et al. Effect of barley and oat flour types and sourdoughs on dough rheology and bread quality of composite wheat bread[J]. Journal of Cereal Science, 2012, 55(1): 44-52.

[44]GILL S, VASANTHAN T, OORAIKUL B, et al. Wheat bread quality as influenced by the substitution of waxy and regular barley flours in their native and extruded forms[J]. Journal of Cereal Science, 2002, 36(2): 219-237.

[45]HEINIO R L, NOORT M W J, KATINA K, et al. Sensory characteristics of wholegrain and bran-rich cereal foods-A review[J]. Trends in Food Science &Technology, 2016, 47: 25-38.

[46]楊維宇. 燕麥 β-葡聚糖硬脂酸酯的制備及楊梅素負載性能研究[D]. 南昌大學(xué), 2020.YANG W Y. The study on the preparation of oat β-glucan srearate aster and its properties of myricetin loaded[D].Nanchang University, 2020.

[47]蔡夢思, 謝勇, 周勇軍, 等. 魔芋葡甘露聚糖對β-葡聚糖復(fù)合凝膠性質(zhì)的影響[J/OL]. 食品與發(fā)酵工業(yè): DOI:10.13995/j.cnki.11-1802/ts.028585.CAI M S, XIE Y, ZHOU Y J, et al. Effect of konjac glucomannan on the properties of β-glucan composite gel[J/OL].Food and Fermentation Industries. DOI:10.13995/ j.cnki.11-1802/ts.028585.

[48]張晶. 超高壓處理對燕麥淀粉/β-葡聚糖復(fù)配體系的影響及抑制淀粉老化機制的研究[D]. 內(nèi)蒙古農(nóng)業(yè)大學(xué), 2021.ZHANG J. Study on the effects of ultra-high pressure treatment on oat starch/β-glucan compound system and mechanism of inhibiting retrogradation of starch[D]. Inner Mongolia University, 2021.

[49]李淵. 大麥 β-葡聚糖對小麥面團性質(zhì)影響的機理研究[D]. 江南大學(xué), 2016.LI Y. Mechanism study on the effects of barley β-glucan on the properties of wheat dough[D]. Jiangnan University, 2016.

[50]KUREK M A, MOCZKOWSKA M, PIECZYKOLAN E, et al.Barley β-D-glucan-modified starch complex as potential encapsulation agent for fish oil[J]. International Journal of Biological Macromolecules. 2018, 120: 596-602.

[51]劉嘉. OS-燕麥 β-葡聚糖酯自聚集體的構(gòu)建及應(yīng)用[D]. 西南大學(xué), 2015.LIU J. Conshruction and application of octenylsuccinate oat β-glucan self-assemblies[D]. Southwest University, 2015.

[52]馬倩, 趙晨陽, 吳振, 等. 氨基酸對不同 pH 條件下辛烯基琥珀酸燕麥β-葡聚糖酯自聚集行為的影響[J]. 食品與發(fā)酵工業(yè),DOI: 10.13995/j.cnki.11-1802/ts.027855.MA Q, ZHAO Q Y, WU Z, et al. Effects of amino acids on the self-assembly behaviors of octenylsuccinated oat β-glucan under different pH conditions[J]. Food and Fermentation Industries,DOI:10.13995/j.cnki.11-1802/ts.027855.

[53]陳虎. 改性 β-葡聚糖提高黑果枸杞花青素穩(wěn)定性的技術(shù)及功能性評價[D]. 青海大學(xué), 2018.CHEN H. Technical and functional evaluation of improving the stability of anthocyanin of lycium ruthenicum murr by modified β-glucan[D]. Qinghai university, 2018.

[54]張楨玉. 大麥 β-葡聚糖復(fù)合小麥蛋白脂肪替代物的制備及應(yīng)用研究[D]. 江南大學(xué), 2021.ZAHNG Z Y. Preparation and application of a fat replacer compounding barley β-glucan with wheat protein[D]. Jiangnan University, 2021.

[55]鄧楚君. 乳鐵蛋白、姜黃素、燕麥 β-葡聚糖二元及三元復(fù)合物的結(jié)構(gòu)特征及自組裝機制研究[D]. 河南科技學(xué)院, 2019.DENG C J. Structural characteristics and self-assembly mechanism of the binary and ternary complexes by lactoferrin,curcumin and oat β-glucan[D]. Henan Institute of Science and Technology, 2019.

[56]SHEN R L, LIU X Y, DONG J L, et al. The gel properties and microstructure of the mixture of oat b-glucan/soy protein isolates[J]. Food Hydrocolloids, 2015, 47: 108-114.

[57]左淑榮. 燕麥β-Glucan的理化特性及其與肌原纖維蛋白的相互作用研究[D]. 合肥工業(yè)大學(xué). 2018.ZUO S R. Studies on physicochemical of oat β-glucan and its interaction with myofibrillar protein[D]. Hefei University of Technology. 2018.

[58]KONTOGIORGOS V, RITZOULIS C, BILIADERIS C G, et al.Effect of barley β-glucan concentration on the microstructural and mechanical behaviour of acid-set sodium caseinate gels[J].Food Hydrocolloids, 2006, 20(5): 749-756.

[59]LAZARIDOU A, BILIADERIS C G. Concurrent phase separation and gelation in mixed oat β-glucans/sodium caseinate and oat β-glucans/pullulan aqueous dispersions[J]. Food Hydrocolloids, 2009, 23(3): 886-895.

[60]LAZARIDOU A, SERAFEIMIDOU A, BILIADERIS C G, et al.Structure development and acidification kinetics infermented milk containing oat β-glucan, a yogurt culture and a probiotic strain[J]. Food Hydrocolloids, 2014, 39: 204-214.

[61]REPIN N, SCANLON M G, FULCHER R G. Phase behaviour of casein micelles and barley beta-glucan polymer molecules in dietary fibre-enriched dairy systems[J]. Journal of Colloid &Interface Science, 2012, 377(1): 7-12.

[62]PENTIK?INEN S, KARHUNEN L, FLANDER L. Enrichment of biscuits and juice with oat b-glucan enhances postprandial satiety[J]. Appetite, 2014, 75: 150-156.

[63]CHEN H, NIE Q, XIE M, et al. Protective effects of β-glucan isolated from highland barley on ethanol induced gastric damage in rats and its benefits to mice gut conditions[J]. Food Research International, 2019, 122: 157-166.

[64]DONG J L, ZHANG W L, LIN J, et al. The gastrointestinal metabolic effects of oat product based-β-glucan in mice[J]. Food Science & Biotechnology, 2014, 23(3):917-924.

[65]SHEN R L, CAI F L, DONG J L, et al. Hypoglycemic effects and biochemical mechanisms of oat products on streptozotocininduced diabetic mice[J]. Journal of Agricultural and Food Chemistry, 2011, 59(16): 8895-8900.

[66]蔡鳳麗. 燕麥產(chǎn)品的降血糖功效和機理研究[D]. 鄭州輕工業(yè)學(xué)院, 2011.CAI F L. Research on hypoglycemic effect of oat products and its mechanism[D]. Zhengzhou University of Light Industry,2011.

[67]沈南輝. 燕麥 β-葡聚糖對飲食誘導(dǎo)糖調(diào)節(jié)受損小鼠降血糖作用的研究[D]. 重慶大學(xué), 2014.SHEN N H. Study on hypoglycemic effect of oat beta-glucan in mice with diet-induced impaired glucose regulation[D].Chongqing University, 2014.

[68]張宇. 燕麥 β-葡聚糖對淀粉消化吸收和血糖的影響[D]. 江南大學(xué), 2015.ZHANG Y. Study on the effect of oat β-glucan on starch digestion, glucose adsorption and blood sugar[D]. Jiangnan University, 2015.

[69]PINO J L, MUJICA V, ARREDONDO M. Effect of dietary supplementation with oat β-glucan for 3 months in subjects with type Ⅱ diabetes: A randomize d, double-blind, controlled clinical trial[J]. Journal of Functional Foods, https:// doi.org/ 10.1016/j.jff.2020.104311.

[70]LIU Z H, LI B. Epicatechin and β-glucan from highland barley grain modulated glucose metabolism and showed synergistic effect via Akt pathway[J]. Journal of Functional Foods, https://doi.org/ 10.1016/j.jff.2021.104793.

[71]游水平. 燕麥 β-葡聚糖對脂多糖誘導(dǎo)小鼠非酒精性脂肪性肝炎的抑制作用研究[D]. 西北農(nóng)林科技大學(xué), 2013.YOU S P. The inhibiting effect of oat β-glucan on lipopolysaccharide-induced nonalcoholic steatohrpatitis in mice[D]. Northwest A&F University, 2013.

[72]DONG J L, ZHU Y Y, MA Y L, et al. Oat products modulate the gut microbiota and produce anti-obesity effects in obese rats[J].Journal of Functional Foods, 2016, 25: 408-420.

[73]孫鑫娟. 發(fā)酵大麥 β-葡聚糖的特性及其對脂代謝調(diào)節(jié)作用研究[D]. 江蘇大學(xué), 2019.SUN X J. The study on characteristics of fermented barley β-glucan and its regulation on lipid metabolism[D]. Jiangsu University, 2019.

[74]戎銀秀. 青稞 β-葡聚糖的制備、結(jié)構(gòu)解析及其降血脂活性的研究[D]. 蘇州大學(xué), 2018.RONG Y X. The extraction and structural elucidation of highland barley β-glucan and the investigation of its antihyperlipidemic effects[D]. Soochow University, 2018.

[75]SHEN R L, DANG X Y, DONG J L, et al. Effects of oat β-glucan on fecal characteristics intestinal microflora,and intestinal bacterial metabolites in rats[J]. Journal of Agricultural and Food Chemistry, 2012, 60(45): 11301-11308.

[76]聶晨曦. 青稞 β-葡聚糖理化性質(zhì)及其對腸道菌群的影響[D].西北農(nóng)林科技大學(xué), 2019.NIE C X. Physicochemical properties of highland barley β-glucan and its effects on intestinal flora[D]. Northwest A&F University, 2019.

[77]DONG J L, YANG M, ZHU Y Y, et al. Comparative study of thermal processing on the physicochemical properties and prebiotic effects of the oat β-glucan by in vitro human fecal microbiota fermentation[J]. Food Research International, https://doi.org/10.1016/j.foodres.2020.109818.

[78]TANG T, SONG J J, WANG H W, et al. Qingke β-glucan synergizes with a β-glucan-utilizing Lactobacillus strain to relieve capsaicin-induced gastrointestinal injury in mice[J].International Journal of Biological Macromolecules, 2021, 174:289-299.

[79]CHENG W Y, LAM K L, LI X J, et al. Circadian disruptioninduced metabolic syndrome in mice is ameliorated by oat βglucan mediated by gut microbiota[J]. Carbohydrate Polymers,https://doi.org/10.1016/j.carbpol.2021.118216.

[80]XIAO X, ZHOU Y R, TAN C, et al. Barley β-glucan resist oxidative stress of Caenorhabditis elegans via daf-2/daf-16 pathway[J]. International journal of biological macromolecules,2021, 193(B): 1021-1031.

[81]HUSSAIN P R, RATHER S A, SURADKAR P P. Structural characterization and evaluation of antioxidant, anticancer and hypoglycemic activity of radiation degraded oat (Avena sativa)β-glucan[J]. Radiation Physics and Chemistry, 2018, 144: 218-230.

[82]SUCHECKA D, B?ASZCZYK K HARASYM J, et al. Impact of purified oat 1-3,1-4-b-d-glucan of different molecular weight on alleviation of inflammation parameters during gastritis[J].Journal of Functional Foods, 2017, 28: 11-18.

[83]HE X J, LIN Y, XUE Y, et al. Barley β-glucan gelatin sponge improves impaired wound healing in diabetic and immunosuppressed mice by regulating macrophage polarization[J]. Materials Today Communications, https://doi.org/10.1016/j.mtcomm.2021.102744.

[84]R?SCH C, MEIJERINK M, DELAHAIJE R J B M, et al.Immunomodulatory properties of oat and barley β-glucan populations on bone marrow derived dendritic cells[J]. Journal of Functional Foods, 2016, 26: 279-289.

[85]SHEN R L, WANG Z, DONG J L. Effects of oat soluble and insoluble β-glucan on 1,2-dimethylhydrazine-induced early colon carcinogenesis in mice[J]. Food and Agricultural Immunology, 2016, 27(5): 1-10.

備注:本文的彩色圖表可從本刊官網(wǎng)(http://lyspkj.ijournal.cn)、中國知網(wǎng)、萬方、維普、超星等數(shù)據(jù)庫下載獲取。

相關(guān)知識

常見的全谷物食品有哪些 如何辨別全谷物食品
全谷物食品:健康的寶藏
全谷物中膳食纖維含量高 怎么吃對有門道
全谷物中膳食纖維含量高?怎么吃對有門道
全谷物食品
全谷物能改善便秘、降低血糖,但全谷物≠全谷物食品?怎么選?
全谷物及全谷物食品,健康食品健康飲食的選擇
全谷物食品對健康的好處
全谷物是粗糧嗎?吃全谷物,能不能幫助減肥?
十大膳食纖維食物

網(wǎng)址: 全谷物食品重要膳食纖維組分 ——谷物β http://www.u1s5d6.cn/newsview549443.html

推薦資訊