首頁 資訊 Maintenance mechanism of intestinal barrier function integrity by intestinal microbes

Maintenance mechanism of intestinal barrier function integrity by intestinal microbes

來源:泰然健康網(wǎng) 時(shí)間:2025年11月14日 02:04

摘要: 腸道微生物群是一個(gè)穩(wěn)定且復(fù)雜的生態(tài)系統(tǒng),可以通過形成菌膜屏障或促進(jìn)腸道上皮細(xì)胞增殖分化等方式形成保護(hù)屏障,并在腸道病原菌感染和威脅期間維持和促進(jìn)免疫穩(wěn)態(tài)中起積極作用。本文重點(diǎn)敘述宿主-腸道微生物相互作用過程中抗病原菌感染的方式,以及腸道微生物參與合成抗菌化合物抵御腸道病原菌入侵和威脅的機(jī)制,為調(diào)控腸道微生物解決臨床胃腸道疾病及其相關(guān)癥狀提供理論參考依據(jù)。

Maintenance mechanism of intestinal barrier function integrity by intestinal microbes

Abstract: The gut microbiota is a stable and complex ecosystem that forms a protective barrier by forming a membrane barrier and promoting proliferation and differentiation of intestinal epithelial cells, and plays an active role in maintaining and promoting immune homeostasis during intestinal pathogen infection and threats. The paper focuses on the mechanism of anti-pathogenic infection in host-intestinal microbial interactions and the involvement of intestinal microbes in the synthesis of antibacterial compounds against intestinal pathogens and threats, and to provide a theoretical reference for regulation of intestinal microbes to solve clinical gastrointestinal diseases and related symptoms.

Keywords: Intestinal microbes    Intestinal barrier    Maintenance mechanism    Research overview    

腸道穩(wěn)態(tài)是由腸道粘膜屏障、腸道內(nèi)環(huán)境及其代謝物相互作用而形成的動態(tài)平衡狀態(tài),具有防止病原體入侵、維護(hù)腸道健康的功能。腸道微生物是腸道復(fù)雜的生態(tài)系統(tǒng),從動物出生后腸道微生物逐漸形成復(fù)雜的消化和代謝功能,具有多樣化和穩(wěn)定性的特性。該群體間進(jìn)行的共生、拮抗、競爭以及直接或間接參與的抗菌化合物的合成展現(xiàn)出多重抗感染、抗炎和免疫調(diào)節(jié)的作用,對腸內(nèi)穩(wěn)態(tài)具有決定性作用[1]。這些關(guān)系的微小改變都有利于機(jī)體內(nèi)部或外部腸道病原體的增殖,促使炎癥反應(yīng)或穩(wěn)態(tài)失衡,導(dǎo)致胃腸道或全身感染[2]。

本文從腸道微生物群形成及其與腸道屏障功能的相互作用對抗腸道病原體等方面闡述其作用機(jī)制,為調(diào)控腸道微生物系統(tǒng)維護(hù)腸道健康的治療思路和方法提供了理論參考依據(jù)。

1 腸道微生物及其威脅1.1 腸道微生物

腸道微生物基本上是生物體外來的物質(zhì),因逐漸適應(yīng)宿主腸道環(huán)境,進(jìn)而具備腸道共生特性,按照生理功能分為共生菌、病原菌和條件致病菌。

腸道中存在數(shù)量巨大和種類眾多的菌群,初步評估人體微生物(主要腸道菌群)數(shù)量是體細(xì)胞數(shù)量的1–2倍[3],但大多數(shù)不能體外培養(yǎng);健康個(gè)體95%以上的微生物主要由厚壁菌門、擬桿菌門,放線菌門和變形菌門組成。動物出生后腸道會迅速被腸道共生菌所棲息,小腸主要以厚壁菌門、放線菌門和芽孢桿菌綱為主,而結(jié)腸以擬桿菌們和毛螺菌科為優(yōu)勢菌群[4]。同時(shí)在腸道中有明顯的層次性,腔菌群淺層主要為好氧菌(腸球菌和大腸埃希菌),易損傷不定殖,深層主要為兼性厭氧菌(擬桿菌和鏈球菌),消耗游離氧維持厭氧環(huán)境,部分致病性;膜菌群主要為專性厭氧菌(雙歧桿菌和乳桿菌),通過粘附方式結(jié)合于上皮細(xì)胞,抑制病原菌的粘附定殖。

菌群的組成和數(shù)量受到諸多因素的影響,比如分娩方式、食物和環(huán)境,特別是分娩過程會首先影響幼崽腸道菌群的類型。正常分娩過程中鏈球菌、埃希氏菌屬、克雷伯氏菌和大腸桿菌在腸道內(nèi)首先定殖,通過降低氧氣水平為雙歧桿菌、乳酸菌和擬桿菌屬在內(nèi)的其他厭氧菌群建立有利的環(huán)境,并使厭氧菌占據(jù)主導(dǎo)地位[5],而剖腹產(chǎn)早期腸道微生物群傾向于皮膚附著菌群和環(huán)境菌群[6]。

近期研究表明,人為干預(yù)下剖腹產(chǎn)幼崽腸道雙歧桿菌、乳酸菌和擬桿菌水平可以達(dá)到正常分娩幼崽的水平[7],但后期對宿主健康的影響還需要進(jìn)一步研究。研究發(fā)現(xiàn)在臍帶血、羊水、胎糞、胎盤和胎膜中都檢測并分離了來自母體腸道的菌種,且在母嬰中并沒有發(fā)現(xiàn)任何感染或炎癥的癥狀[8-9]。這是否可以說明腸道菌群的定殖在未分娩時(shí)已經(jīng)開始還需要進(jìn)一步的證實(shí)。

1.2 腸道病原菌威脅

腸道微生物群通常以互利共生或同食共生的關(guān)系在生物體進(jìn)行定殖,其中最普遍的是乳酸桿菌和雙歧桿菌[10]。威脅腸道健康的致病性或潛在致病微生物定殖在宿主中可能引發(fā)炎癥、致癌或傳染性疾病。病原體會誘發(fā)腹瀉性疾病,并伴有脫水和器官的衰竭。此外,腸道病原體釋放毒素,穿透粘液層,粘附于腸上皮細(xì)胞,破壞腸道的免疫系統(tǒng),甚至易位到體循環(huán)中,損傷機(jī)體的整體免疫。

最具威脅性的腸道病原體包括志賀氏菌、空腸彎曲菌、耶爾森氏菌、產(chǎn)生毒素的霍亂弧菌、導(dǎo)致分泌性腹瀉的大腸桿菌和引起腸道熱的副溶血性弧菌。在條件性致病菌中有兩個(gè)典型菌群:產(chǎn)生心內(nèi)膜炎的腸球菌和偽膜性腸炎的艱難梭菌,均因長期使用抗生素后致使菌群失調(diào),產(chǎn)生耐藥性而大量繁殖[11]。

2 腸道微生物促進(jìn)腸道完整性的途徑

腸道內(nèi)微生物呈現(xiàn)了明顯的定殖分布。微生物與腸道粘膜的粘附、嵌合和結(jié)合,組成有一定規(guī)律的菌膜屏障結(jié)構(gòu),通過競爭病原菌的粘膜位點(diǎn)定殖、競爭營養(yǎng)物質(zhì)攝入以及產(chǎn)生代謝物抑制病原菌、促進(jìn)上皮細(xì)胞增殖分化或激活腸道粘膜免疫等方式抑制腸道內(nèi)病原菌的過度繁殖和易位,降低炎癥反應(yīng)和氧化應(yīng)激。

2.1 競爭粘膜位點(diǎn)定殖,形成菌膜屏障

益生菌通過消耗營養(yǎng)物質(zhì)競爭粘膜定殖位點(diǎn)、抑制病原菌定殖。細(xì)菌表面的結(jié)構(gòu)可以決定菌的定殖能力,其表面層蛋白或S層蛋白具有粘附、聚集、調(diào)節(jié)T細(xì)胞免疫及抗原變異的作用。研究發(fā)現(xiàn),鼠李糖乳桿菌的菌毛中含有宿主粘液結(jié)合蛋白,這可能與其競爭粘膜位點(diǎn)定殖的行為有關(guān)[12]。乳桿菌通過表面的S層蛋白可以粘附宿主腸道上皮細(xì)胞的表面,競爭性抑制腸道病原微生物的入侵和定殖[13]。

益生菌也通過產(chǎn)生代謝產(chǎn)物發(fā)揮腸道屏障作用。雙歧桿菌產(chǎn)生的磷壁酸與上皮細(xì)胞特異性結(jié)合,產(chǎn)生細(xì)胞外糖苷酶降解腸道粘膜蛋白低聚糖和乳酸系列Ⅰ型糖鞘脂,抑制病原菌在腸道的定殖[14]。部分益生菌可以產(chǎn)生有機(jī)酸,降低腸道pH值,同時(shí)促進(jìn)腸道蠕動,排出定殖的病原菌,從而維護(hù)腸道菌群的生態(tài)平衡[14]。

2.2 促進(jìn)上皮細(xì)胞增殖分化

上皮細(xì)胞的持續(xù)性產(chǎn)生、遷移和凋亡為微生物的附著和持久性提供了動態(tài)的屏障,同時(shí),微生物的定殖對腸道生理過程及粘膜防御機(jī)制的發(fā)育和功能具有重大的影響。

動物從出生到斷奶期間腸絨毛和隱窩細(xì)胞伴隨著微生物的定殖逐漸成熟,逐步分化成各種成熟的上皮細(xì)胞,如腸絨毛細(xì)胞、杯狀細(xì)胞、潘氏細(xì)胞或腸內(nèi)分泌細(xì)胞。腸道上皮細(xì)胞將機(jī)體同外部環(huán)境分離,避免致病性細(xì)菌、病毒或致病性真菌等抗原的侵入。研究表明,定殖的微生物可以控制細(xì)胞分化的周期和隱窩細(xì)胞增殖基因的表達(dá),進(jìn)而影響上皮細(xì)胞的數(shù)量[15];同時(shí),微生物也可以通過誘導(dǎo)神經(jīng)遞質(zhì)和固有層細(xì)胞釋放細(xì)胞因子作用于上皮細(xì)胞的更新來影響上皮細(xì)胞的數(shù)量[16-17]。比如,鼠李糖乳桿菌分泌的可溶性蛋白p75和p40通過激活PI3/Akt信號通路,刺激腸道上皮細(xì)胞分泌保護(hù)性熱應(yīng)激蛋白Hsp72和Hsp25,促進(jìn)腸道細(xì)胞的增殖,同時(shí)抑制由TNF誘導(dǎo)的細(xì)胞凋亡[18-19]。鼠李糖乳桿菌也可以誘導(dǎo)粒細(xì)胞集落刺激因子(G-CSF)的大量分泌,進(jìn)而抑制TNF-α介導(dǎo)的凋亡前體p38的活化,表現(xiàn)出特異性的抗細(xì)胞凋亡的作用[20]。

微生物的定殖不僅促進(jìn)細(xì)胞的增殖,同時(shí)也是正常腸道發(fā)育和發(fā)揮功能的必需部分。無菌小鼠具有較小的腸道質(zhì)量和表面積,表現(xiàn)出較短的絨毛和較淺的隱窩,細(xì)胞增殖和沿隱窩到絨毛軸的遷移率降低[21]。同樣在常規(guī)培養(yǎng)抗生素處理的小鼠結(jié)腸中發(fā)現(xiàn),細(xì)胞增殖率降低,隱窩含有較少的細(xì)胞。在果蠅試驗(yàn)中發(fā)現(xiàn)乳酸桿菌可以通過釋放活性氧調(diào)節(jié)腸道干細(xì)胞的增殖[22]。

2.3 增強(qiáng)腸道粘膜免疫反應(yīng)

腸道粘膜免疫系統(tǒng)在對共生菌的免疫耐受和病原微生物的免疫應(yīng)答中處于動態(tài)平衡狀態(tài)。腸道上皮敏感細(xì)胞群(M細(xì)胞和潘氏細(xì)胞)作為腸道粘膜的“監(jiān)視者”,通過模式識別受體(pattern recognition receptor,PRR)識別微生物結(jié)構(gòu)成分-病原體相關(guān)分子模式(pathogen-associated molecular patterns,PAMP),迅速感應(yīng)菌群的變化,促進(jìn)M細(xì)胞和潘氏細(xì)胞分泌抗菌肽清除病原微生物,或通過信號傳遞免疫細(xì)胞、樹突狀細(xì)胞、自然殺傷細(xì)胞和巨噬細(xì)胞,促進(jìn)T細(xì)胞與B淋巴細(xì)胞分化成熟,誘導(dǎo)巨噬細(xì)胞分泌IL-10和TGF-β等抗炎因子釋放,誘導(dǎo)樹突狀細(xì)胞分泌IL-12和IL-10等細(xì)胞因子,調(diào)節(jié)Th17/Tregs、Th1/Th2平衡,提高腸道粘液中可溶性免疫球蛋白的水平;同時(shí),促炎性因子(IL-5、IL-6、IL-8、IL-17、IL-21、IL-22和IFN-γ)將嗜中性粒細(xì)胞募集到入侵部位響應(yīng)腸道微生物的變化,維護(hù)腸道相對穩(wěn)態(tài)(圖 1)。

圖 1 腸道微生物進(jìn)行免疫調(diào)節(jié)的方式Figure 1 Mechanism of immunoregulation of intestinal microbes

3 腸道微生物間接參與維護(hù)腸道功能完整性途徑

腸道微生物對宿主的調(diào)控不僅僅直接參與宿主的免疫系統(tǒng),還能通過腸道微生物產(chǎn)生的小分子次級代謝產(chǎn)物循環(huán)作用于人體各個(gè)部位,甚至產(chǎn)生的這些代謝產(chǎn)物在血液中的濃度可以達(dá)到或超過藥物劑量達(dá)到的水平,如細(xì)菌素、次級膽汁酸、短鏈脂肪酸和抗菌肽(圖 2)。

圖 2 腸道微生物間接進(jìn)行免疫調(diào)節(jié)的方式Figure 2 Indirect immunomodulation of intestinal microbes

3.1 細(xì)菌素

細(xì)菌素是細(xì)菌分泌的一類由基因編碼、核糖體合成、對同種或種屬關(guān)系較近的細(xì)菌具有抑制作用的多肽或蛋白質(zhì),主要通過與細(xì)胞膜受體特異性結(jié)合形成孔道或溶解細(xì)胞膜對細(xì)菌進(jìn)行抑制[23]。

細(xì)菌素分為兩類,Ⅰ類含有羊毛硫氨酸,Ⅱ類不含有羊毛硫氨酸。Ⅰ類細(xì)菌素依靠與靶細(xì)胞膜之間靜電力發(fā)揮作用,通過吸附到靶細(xì)胞壁肽聚糖的前體物(脂質(zhì)Ⅱ)形成細(xì)菌素脂質(zhì)Ⅱ復(fù)合物,插入到致病菌胞膜中,形成孔洞致使內(nèi)容物流出;Ⅱ類細(xì)菌素主要通過N端β折疊區(qū)域PA-1識別結(jié)合胞膜甘露糖磷酸轉(zhuǎn)移酶系統(tǒng)N端的胞外環(huán),疏水性C-末端結(jié)構(gòu)域滲透進(jìn)入靶細(xì)胞膜,致使細(xì)胞膜形成孔洞[24]。細(xì)菌素的產(chǎn)生顯著抑制單核細(xì)胞增生李斯特菌、沙門氏菌、耐萬古霉素的腸球菌和其他病原體的定殖[25]。乳桿菌科和雙歧桿菌科是主要產(chǎn)生細(xì)菌素的菌種。人類共生菌群中的有益菌,有望被用于上皮細(xì)胞的外表面產(chǎn)生細(xì)菌素并抑制細(xì)菌感染[26]。盡管越來越受到關(guān)注,但細(xì)菌素的研究受到了非標(biāo)準(zhǔn)化和動物模型結(jié)果不一致的阻礙。

3.2 次級膽汁酸

膽汁酸對維持健康的腸道微生物組成、平衡的脂質(zhì)和碳水化合物代謝、維持胰島素敏感和先天免疫均發(fā)揮著重要作用。膽汁酸是由腸道微生物群控制的機(jī)體必需抗微生物劑,通過損傷細(xì)胞膜或激活,涉及導(dǎo)管素調(diào)節(jié)的維生素D受體和法尼醇X受體發(fā)揮作用[27]。動物體內(nèi)含量最高的兩種初級膽汁酸為膽酸和鵝脫氧膽酸,對應(yīng)的次級膽汁酸為脫氧膽酸和石膽酸。膽汁酸經(jīng)由細(xì)胞色素P450介導(dǎo)的膽固醇的氧化而合成,在肝臟中與甘氨酸和?;撬狁詈?,耦合形式的膽汁酸在小腸被腸道微生物(擬桿菌、梭菌、乳酸菌、雙歧桿菌和李斯特菌)產(chǎn)生的膽酸鹽水解酶水解成游離形式的膽汁酸,緊接著又通過7-α脫羥基作用生成次級膽汁酸[27]。

在無菌和經(jīng)抗生素處理的小鼠體內(nèi),初級膽汁酸顯著增加,次級膽汁酸含量下降明顯,說明腸道菌群對維持膽汁酸的多樣性起著核心作用[28]。次級膽汁酸通過其受體(如TGR5、FXR、PXR)調(diào)控脂質(zhì)信號通路和免疫系統(tǒng)[29]。次級膽汁酸與TGR5受體結(jié)合而激活巨噬細(xì)胞,誘導(dǎo)部分促炎M1巨噬細(xì)胞向抗炎M2巨噬細(xì)胞極化,致使IL-10/IL-12比率升高,IL-10隨后抑制促炎性因子(如TNF-α和IL-6)表達(dá)[30]。在相對低濃度(< 50 μmol/L)條件下,次級膽汁酸與免疫因子結(jié)合,通過降低促炎細(xì)胞因子的表達(dá)水平在結(jié)腸中發(fā)揮作用[31]。膽汁中的膽鹽可以溶解細(xì)菌胞壁,增加細(xì)菌膜的通透性,致使菌膜裂解、細(xì)胞死亡,抑制腸道內(nèi)病原菌的繁殖和生長[32]。但異常高的次級膽汁酸濃度會對結(jié)腸粘膜產(chǎn)生過多的不利影響,如氧化應(yīng)激、DNA損傷、細(xì)胞凋亡和炎癥反應(yīng)等[30]。

3.3 短鏈脂肪酸(short-chain fatty acids,SCFA)

結(jié)腸內(nèi)微生物通過酵解腸道內(nèi)難以消化的碳水化合物產(chǎn)生短鏈脂肪酸,擬桿菌門主要產(chǎn)生乙酸和丙酸,厚壁菌門主要產(chǎn)生丁酸,SCFA具有改善腸道炎癥和發(fā)揮免疫以及抗腫瘤的作用[33]。

短鏈脂肪酸的濃度沿著大腸變化,盲腸和近段結(jié)腸中濃度最高,而遠(yuǎn)端結(jié)腸濃度最低,結(jié)腸中短鏈脂肪酸濃度可以達(dá)到100 nmol/L,并通過消耗可發(fā)酵纖維增強(qiáng)其濃度[34]。乙酸、丙酸和丁酸在一定程度上被上皮細(xì)胞代謝以提供能量使正常結(jié)腸細(xì)胞增殖,降低上皮細(xì)胞通透性并維持上皮細(xì)胞完整性,同時(shí)降低結(jié)腸的pH值阻止病原菌的定殖,其中,丁酸在維持結(jié)腸健康和調(diào)節(jié)細(xì)胞生長和分化中起著最重要的作用[35]。短鏈脂肪酸直接調(diào)節(jié)由T細(xì)胞和B細(xì)胞介導(dǎo)的抗原特異性適應(yīng)性免疫,還通過抑制組蛋白去乙?;富钚源龠M(jìn)腸道中抗炎調(diào)節(jié)性T細(xì)胞的活化和產(chǎn)生,但其對T細(xì)胞介導(dǎo)的免疫反應(yīng)產(chǎn)生抗炎或促炎作用,這取決于其產(chǎn)生的濃度和免疫環(huán)境[36-37]。

在細(xì)胞內(nèi),丁酸濃度低于0.5 mmol/L時(shí),丁酸滿足細(xì)胞的能量需求并刺激正常結(jié)腸細(xì)胞的增殖;當(dāng)濃度在0.5-5.0 mmol/L范圍并超過其能量需求時(shí),除取決于細(xì)胞類型外,丁酸可作為組蛋白去乙?;敢种苿38-39]。丁酸鹽在生理相關(guān)的細(xì)胞內(nèi)濃度為0.5-5.0 mmol/L時(shí),以p53依賴性和非依賴性方式誘導(dǎo)細(xì)胞周期停滯和凋亡[38]。丁酸抑制組蛋白去乙?;覆⒃试S組蛋白高度乙?;率乖S多基因進(jìn)行轉(zhuǎn)錄,包括p21/Cip1和細(xì)胞周期蛋白D3;誘導(dǎo)細(xì)胞周期蛋白依賴性激酶進(jìn)行抑制蛋白p21/Cip1可以導(dǎo)致細(xì)胞周期G1期細(xì)胞停滯[39]。此外,丁酸處理增加非癌細(xì)胞存活信號ERK1/2的磷酸化,也會降低癌細(xì)胞中p-ERK1/2的表達(dá)[40]。研究發(fā)現(xiàn),濃度為0.5 mmol/L或更高時(shí),丁酸鹽通過增加抗轉(zhuǎn)移基因(如金屬蛋白酶)的表達(dá)和抑制促轉(zhuǎn)移基因的激活來抑制癌細(xì)胞的遷移和侵襲率[41]。

3.4 抗菌肽

抗菌肽是一類具有殺菌、抗炎和促進(jìn)機(jī)體修復(fù)等特性的先天免疫效應(yīng)分子。腸道內(nèi)產(chǎn)生的抗菌肽主要有α-防御素、β-防御素、Cathelicidins、C型凝集素(再生胰島衍生蛋白家族)、核糖核酸酶和溶菌酶等;抗菌肽的抗菌機(jī)制主要分為胞膜作用和胞內(nèi)作用,除抗菌活性外,內(nèi)源性抗菌肽還具有免疫調(diào)節(jié)活性,參與調(diào)節(jié)先天性和適應(yīng)性免疫應(yīng)答,是機(jī)體防御外來物質(zhì)入侵的重要介質(zhì),同時(shí)也是機(jī)體適應(yīng)環(huán)境產(chǎn)生的免疫活性分子[42]。

在無菌小鼠中發(fā)現(xiàn)部分抗菌肽的產(chǎn)生需要微生物源的信號,如防御素、再生胰島衍生蛋白3γ和血管生成素的表達(dá)量在無菌小鼠體內(nèi)較常規(guī)飼養(yǎng)小鼠相對較低,同時(shí)發(fā)現(xiàn)多形擬桿菌和無害李斯特菌是誘導(dǎo)血管生成素、Cathelicidin和防御素等抗菌肽的主要菌種[43-44]??咕牡尼尫胚€可被病原體(螺桿菌,志賀氏菌)下調(diào)或被某些益生菌(乳酸菌,雙歧桿菌)上調(diào)。革蘭氏陰性和陽性菌的胞壁酰二肽配體可以激活細(xì)胞內(nèi)病原體識別受體核苷酸寡聚化結(jié)構(gòu)域,誘導(dǎo)來自潘氏細(xì)胞抗菌肽的釋放,在缺失核苷酸寡聚化結(jié)構(gòu)域的小鼠腸道內(nèi)幾乎沒有檢測到抗菌肽存在,而且腸道菌群結(jié)構(gòu)發(fā)生嚴(yán)重改變[45]。同時(shí),微生物信號也可以通過非病原體識別受體依賴機(jī)制誘導(dǎo)抗菌肽的表達(dá),比如合成的短鏈脂肪酸丁酸上驗(yàn)證可以誘導(dǎo)抗菌肽的表達(dá),增強(qiáng)機(jī)體免疫性能[46]。

4 小結(jié)與展望

腸道微生物參與了營養(yǎng)吸收、物質(zhì)代謝,促進(jìn)機(jī)體發(fā)育,維持宿主健康。在機(jī)體的免疫防御功能中,不僅局限于增強(qiáng)腸道粘膜屏障功能,還可以調(diào)節(jié)宿主的整體免疫,從而有效地抑制了病原微生物的威脅。

腸道微生物在腸道功能維護(hù)中的調(diào)節(jié)機(jī)制涉及多種信號通路及分子機(jī)制,目前的研究多限于對獨(dú)立細(xì)胞、受體或分子觀察,但具體的信號路徑還需要進(jìn)一步明確。加強(qiáng)對腸道微生物與腸道屏障功能關(guān)系的研究,有助于了解腸道炎癥性疾病發(fā)病機(jī)制,為臨床上治療腸道炎癥性疾病提供新的思路,同時(shí)為預(yù)防腸道疾病的發(fā)生提供新的策略。

REFERENCES

[1]

Yoon MY, Lee K, Yoon SS. Protective role of gut commensal microbes against intestinal infections[J]. Journal of Microbiology, 2014, 52(12): 983-989. DOI:10.1007/s12275-014-4655-2

[2]

Liu JL. Advances in gut microbiota and hepatocellular carcinoma[J]. Chinese Journal of Cancer Biotherapy, 2018, 25(11): 1185-1190. (in Chinese)
劉軍靈. 腸道微生物穩(wěn)態(tài)與肝癌關(guān)系的研究進(jìn)展[J]. 中國腫瘤生物治療雜志, 2018, 25(11): 1185-1190. DOI:10.3872/j.issn.1007-385X.2018.11.018

[3]

Hanage WP. Microbiology: microbiome science needs a healthy dose of scepticism[J]. Nature, 2014, 512(7514): 247-248. DOI:10.1038/512247a

[4]

Frank DN, Amand ALS, Feldman RA, et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(34): 13780-13785. DOI:10.1073/pnas.0706625104

[5]

Houghteling PD, Walker WA. Why is initial bacterial colonization of the intestine important to infants' and children's health?[J]. Journal of Pediatric Gastroenterology and Nutrition, 2015, 60(3): 294-307. DOI:10.1097/MPG.0000000000000597

[6]

Rutayisire E, Huang K, Liu YH, et al. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants' life: a systematic review[J]. BMC Gastroenterology, 2016, 16: 86. DOI:10.1186/s12876-016-0498-0

[7]

Dominguez-Bello MG, de Jesus-Laboy KM, Shen N, et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer[J]. Nature Medicine, 2016, 22(3): 250-253. DOI:10.1038/nm.4039

[8]

Jiménez E, Fernández L, María ML, et al. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section[J]. Current Microbiology, 2005, 51(4): 270-274. DOI:10.1007/s00284-005-0020-3

[9]

Mueller NT, Bakacs E, Combellick J, et al. The infant microbiome development: mom matters[J]. Trends in Molecular Medicine, 2015, 21(2): 109-117. DOI:10.1016/j.molmed.2014.12.002

[10]

O'Callaghan A, van Sinderen D. Bifidobacteria and their role as members of the human gut microbiota[J]. Frontiers in Microbiology, 2016, 7: 925.

[11]

Perez-Lopez A, Behnsen J, Nuccio SP, et al. Mucosal immunity to pathogenic intestinal bacteria[J]. Nature Reviews Immunology, 2016, 16(3): 135-148. DOI:10.1038/nri.2015.17

[12]

Kankainen M, Paulin L, Tynkkynen S, et al. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(40): 17193-17198. DOI:10.1073/pnas.0908876106

[13]

Hyn?nen U, Palva A. Lactobacillus surface layer proteins: structure, function and applications[J]. Applied Microbiology and Biotechnology, 2013, 97(12): 5225-5243. DOI:10.1007/s00253-013-4962-2

[14]

Xing XW, Tao JH, Jiang S, et al. The impacts of intestinal microflora on the structure and functions of intestinal mucosal barrier: research progress[J]. Chinese Journal of Microecology, 2018, 30(6): 725-730. (in Chinese)
邢肖偉, 陶金華, 江曙, 等. 腸道菌群影響?zhàn)つて琳辖Y(jié)構(gòu)與功能的研究進(jìn)展[J]. 中國微生態(tài)學(xué)雜志, 2018, 30(6): 725-730.

[15]

Rakoff-Nahoum S, Kong Y, Kleinstein SH, et al. Analysis of gene-environment interactions in postnatal development of the mammalian intestine[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(7): 1929-1936. DOI:10.1073/pnas.1424886112

[16]

Hyland NP, Cryan JF. Microbe-host interactions: influence of the gut microbiota on the enteric nervous system[J]. Developmental Biology, 2016, 417(2): 182-187. DOI:10.1016/j.ydbio.2016.06.027

[17]

Obata Y, Pachnis V. The effect of microbiota and the immune system on the development and organization of the enteric nervous system[J]. Gastroenterology, 2016, 151(5): 836-844. DOI:10.1053/j.gastro.2016.07.044

[18]

Tao Y, Drabik KA, Waypa TS, et al. Soluble factors from Lactobacillus GG activate MAPKs and induce cytoprotective heat shock proteins in intestinal epithelial cells[J]. American Journal of Physiology-Cell Physiology, 2006, 290(4): C1018-C1030. DOI:10.1152/ajpcell.00131.2005

[19]

Yan F, Cao HW, Cover TL, et al. Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth[J]. Gastroenterology, 2007, 132(2): 562-575. DOI:10.1053/j.gastro.2006.11.022

[20]

Yan F, Polk DB. Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells[J]. The Journal of Biological Chemistry, 2002, 277(52): 50959-50965. DOI:10.1074/jbc.M207050200

[21]

Sommer F, Nookaew I, Sommer N, et al. Site-specific programming of the host epithelial transcriptome by the gut microbiota[J]. Genome Biology, 2015, 16: 62. DOI:10.1186/s13059-015-0614-4

[22]

Jones RM, Luo LP, Ardita CS, et al. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species[J]. EMBO Journal, 2013, 32(23): 3017-3028. DOI:10.1038/emboj.2013.224

[23]

Kuang Z, Li XY, Xu CX, et al. Research progress of bacteriocins from lactic acid bacteria and its application in aqua culture and processing[J]. Science and Technology of Food Industry, 2019, 40(4): 292-298. (in Chinese)
匡珍, 李學(xué)英, 徐春霞, 等. 乳酸菌細(xì)菌素研究進(jìn)展及其在水產(chǎn)養(yǎng)殖和加工中的應(yīng)用[J]. 食品工業(yè)科技, 2019, 40(4): 292-298.

[24]

Zhang XN, Shang YN, Chen J, et al. Mechanism of bacteriocins from Lactobacillus and their applications in meat products[J]. Food Research and Development, 2018, 39(11): 192-199. (in Chinese)
張曉寧, 尚一娜, 陳境, 等. 乳酸菌細(xì)菌素的作用機(jī)制及在肉制品中的應(yīng)用[J]. 食品研究與開發(fā), 2018, 39(11): 192-199. DOI:10.3969/j.issn.1005-6521.2018.11.036

[25]

Zhu S, Zhang AZ, Jiang N, et al. Bacteriocins and their application in animal production[J]. Chinese Journal of Animal Nutrition, 2014, 26(2): 327-333. (in Chinese)
朱雙, 張愛忠, 姜寧, 等. 細(xì)菌素及其在動物生產(chǎn)中的應(yīng)用[J]. 動物營養(yǎng)學(xué)報(bào), 2014, 26(2): 327-333. DOI:10.3969/j.issn.1006-267x.2014.02.006

[26]

Hols P, Ledesma-García, Gabant P, et al. Mobilization of microbiota commensals and their bacteriocins for therapeutics[J]. Trends in Microbiology, 2019, 27(8): 690-702. DOI:10.1016/j.tim.2019.03.007

[27]

Martin G, Kolida S, Marchesi JR, et al. In vitro modeling of bile acid processing by the human fecal microbiota[J]. Frontiers in Microbiology, 2018, 9: 1153. DOI:10.3389/fmicb.2018.01153

[28]

Wahlstr?m A, Kovatcheva-Datchary P, St?hlman M, et al. Induction of farnesoid X receptor signaling in germ-free mice colonized with a human microbiota[J]. Journal of Lipid Research, 2017, 58(2): 412-419. DOI:10.1194/jlr.M072819

[29]

Gadaleta RM, Oldenburg B, Willemsen ECL, et al. Activation of bile salt nuclear receptor FXR is repressed by pro-inflammatory cytokines activating NF-κB signaling in the intestine[J]. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2011, 1812(8): 851-858. DOI:10.1016/j.bbadis.2011.04.005

[30]

Jia W, Xie GX, Jia WP. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis[J]. Nature Reviews Gastroenterology & Hepatology, 2018, 15(2): 111-128.

[31]

Ward JBJ, Lajczak NK, Kelly OB, et al. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2017, 312(6): G550-G558. DOI:10.1152/ajpgi.00256.2016

[32]

Hu HL, Gao M. Research advance in intestinal barrier function and evaluation index[J]. Chinese Journal of Animal Science, 2012, 48(17): 78-82. (in Chinese)
胡紅蓮, 高民. 腸道屏障功能及其評價(jià)指標(biāo)的研究進(jìn)展[J]. 中國畜牧雜志, 2012, 48(17): 78-82. DOI:10.3969/j.issn.0258-7033.2012.17.021

[33]

McNabney SM, Henagan TM. Short chain fatty acids in the colon and peripheral tissues: A focus on butyrate, colon cancer, obesity and insulin resistance[J]. Nutrients, 2017, 9(12): 1348. DOI:10.3390/nu9121348

[34]

van Der Beek CM, Canfora EE, Kip AM, et al. The prebiotic inulin improves substrate metabolism and promotes short-chain fatty acid production in overweight to obese men[J]. Metabolism, 2018, 87: 25-35. DOI:10.1016/j.metabol.2018.06.009

[35]

Rivière A, Selak M, Lantin D, et al. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut[J]. Frontiers in Microbiology, 2016, 7: 979.

[36]

Wang X, Zhang MM, Jiang N, et al. Sodium Phenylbutyrate ameliorates inflammatory response induced by Staphylococcus aureus lipoteichoic acid via suppressing TLR2/NF-κB/NLRP3 pathways in MAC-T cells[J]. Molecules, 2018, 23(12): 3056. DOI:10.3390/molecules23123056

[37]

Bach Knudsen KE, L?rke HN, Hedemann MS, et al. Impact of diet-modulated butyrate production on intestinal barrier function and inflammation[J]. Nutrients, 2018, 10(10): 1499. DOI:10.3390/nu10101499

[38]

Perego S, Sansoni V, Banfi G, et al. Sodium butyrate has anti-proliferative, pro-differentiating, and immunomodulatory effects in osteosarcoma cells and counteracts the TNFα-induced low-grade inflammation[J]. International Journal of Immunopathology and Pharmacology, 2018. DOI:10.1177/0394632017752240

[39]

Davie JR. Inhibition of histone deacetylase activity by butyrate[J]. The Journal of Nutrition, 2003, 133(7): 2485S-2493S. DOI:10.1093/jn/133.7.2485S

[40]

Zeng HW, Taussig DP, Cheng WH, et al. Butyrate inhibits cancerous HCT116 colon cell proliferation but to a lesser extent in noncancerous NCM460 colon cells[J]. Nutrients, 2017, 9(1): 25. DOI:10.3390/nu9010025

[41]

Emenaker NJ, Calaf GM, Cox D, et al. Short-chain fatty acids inhibit invasive human colon cancer by modulating uPA, TIMP-1, TIMP-2, mutant p53, Bcl-2, Bax, p21 and PCNA protein expression in an in vitro cell culture model[J]. The Journal of Nutrition, 2001, 131(11): 3041S-3046S. DOI:10.1093/jn/131.11.3041S

[42]

Zhang MM, Jiang N, Zhang AZ, et al. Feed additives affect endogenous antimicrobial peptide expression and immunoregulatory mechanisms[J]. Chinese Journal of Animal Nutrition, 2019, 31(1): 91-96. (in Chinese)
張萌萌, 姜寧, 張愛忠, 等. 飼料添加劑影響內(nèi)源性抗菌肽表達(dá)和免疫調(diào)節(jié)機(jī)制[J]. 動物營養(yǎng)學(xué)報(bào), 2019, 31(1): 91-96.

[43]

Chen BR, Ni X, Sun R, et al. Commensal bacteria-dependent CD8αβ+ T cells in the intestinal epithelium produce antimicrobial peptides[J]. Frontiers in Immunology, 2018, 9: 1065. DOI:10.3389/fimmu.2018.01065

[44]

Eckmann L. Sensor molecules in intestinal innate immunity against bacterial infections[J]. Current Opinion in Gastroenterology, 2006, 22(2): 95-101. DOI:10.1097/01.mog.0000208458.38772.2a

[45]

Hancock REW, Diamond G. The role of cationic antimicrobial peptides in innate host defences[J]. Trends in Microbiology, 2000, 8(9): 402-410. DOI:10.1016/S0966-842X(00)01823-0

[46]

Robinson K, Ma X, Liu YL, et al. Dietary modulation of endogenous host defense peptide synthesis as an alternative approach to in-feed antibiotics[J]. Animal Nutrition, 2018, 4(2): 160-169.

相關(guān)知識

Interaction between polysaccharide and intestinal flora and its structure
The 'intestinal mechanism' of anti
Research progress and potential mechanism of postbiotics in alleviating gastrointestinal diseases
Fermentation Characteristics and Intestinal Health Effects of Fiber Components
魚類腸道組織結(jié)構(gòu)、功能、影響因素及其保護(hù)物質(zhì)的研究進(jìn)展
Research Progress of Probiotics, Prebiotics, Synbiotics and Intestinal Health in Canine and Feline
Maintenance of Good Personal & Environmental Hygiene to Better Protect Children’s Health
Intestines, the “barometer” of health
乳鐵蛋白對腸道屏障保護(hù)作用的研究進(jìn)展
Research Progress of Animal Oxidative Stress and Its Nutritional Regulation

網(wǎng)址: Maintenance mechanism of intestinal barrier function integrity by intestinal microbes http://www.u1s5d6.cn/newsview1840975.html

推薦資訊