健康成年人群尿中對(duì)硝基酚水平對(duì)甲狀腺功能的影響——基于美國NHANES數(shù)據(jù)庫
摘要:
背景
對(duì)硝基酚(PNP)是有機(jī)磷農(nóng)藥對(duì)硫磷和甲基對(duì)硫磷主要的特異性代謝產(chǎn)物。既往的研究發(fā)現(xiàn)對(duì)硫磷和甲基對(duì)硫磷可能具有內(nèi)分泌干擾作用,但證據(jù)較為有限。
目的
探討健康成年人群尿中PNP濃度與甲狀腺功能的相關(guān)性及是否存在性別差異。
方法
基于2007—2008年美國國家營養(yǎng)與健康調(diào)查,將1071例同時(shí)具有尿PNP、血清甲狀腺功能指標(biāo)的20~64歲健康成年人納入本研究。收集血清甲狀腺刺激素(TSH)、游離三碘甲狀腺原氨酸(FT3)、游離甲狀腺激素(FT4)、總?cè)饧谞钕僭彼?TT3)、總甲狀腺激素(TT4)、甲狀腺球蛋白(TG)、甲狀腺球蛋白抗體(TG-Ab)數(shù)據(jù)以評(píng)估甲狀腺功能。采用廣義線性模型分析尿PNP與血清甲狀腺功能指標(biāo)的關(guān)系及劑量-反應(yīng)關(guān)系,并分析性別差異。
結(jié)果
總?cè)巳褐心騊NP的檢出率為92.5%,肌酐校正后質(zhì)量分?jǐn)?shù)中位數(shù)為0.62 μg·g?1。男性和女性肌酐校正后尿PNP質(zhì)量分?jǐn)?shù)中位數(shù)分別是0.60、0.66 μg·g?1???cè)巳褐兄饕谞钕俟δ苤笜?biāo)TSH、FT3、FT4、TT3、TT4的活性或質(zhì)量濃度中位數(shù)分別為1500.00 μIU·L?1、3200.00 pg·L?1、8.00 ng·L?1、1140.00 ng·L?1、76.00 μg·L?1。在總?cè)巳褐?,尿PNP每增加一個(gè)對(duì)數(shù)單位,血清FT3、FT4、TT3分別下降1050.00 pg·L?1 (b=?0.02,95%CI:?0.02~?0.01)、10.50 ng·L?1 (b=?0.02,95%CI:?0.03~?0.01)和10.50 ng·L?1 (b=?0.02,95%CI:?0.03~?0.01),且存在劑量-反應(yīng)關(guān)系(均P趨勢(shì)<0.05)。性別分層后發(fā)現(xiàn),在男性中,尿PNP每增加一個(gè)對(duì)數(shù)單位,血清TG-Ab水平增加1100.00 IU·L?1 (b=0.04,95%CI:0.00~0.08),血清FT3水平降低1020.00 pg·L?1 (b=?0.01,95%CI:?0.02~0.00),且存在劑量-反應(yīng)關(guān)系(均P趨勢(shì)<0.05)。在女性中,尿PNP每增加一個(gè)對(duì)數(shù)單位,血清FT3下降1050.00 pg·L?1(b=?0.02,95%CI:?0.03~?0.01),F(xiàn)T4下降10.50 ng·L?1(b=?0.02,95%CI:?0.03~0.00),TT3下降10.70 ng·L?1(b=?0.03,95%CI:?0.05~?0.01),TT4下降10.50 μg·L?1(b=?0.02,95%CI:?0.04~0.00),且尿PNP水平與血清FT3和TT3水平均呈現(xiàn)劑量-反應(yīng)關(guān)系(均P趨勢(shì)<0.001)。
結(jié)論
尿中PNP濃度變化會(huì)導(dǎo)致血清FT4、FT3、TT3水平變化,并表現(xiàn)出性別差異。
Abstract:
Background
Parathion and methyl parathion are typical organophosphorus insecticides and para?nitrophenol (PNP) is their main specific metabolite. Previous studies have shown that parathion and methyl parathion may play a role as endocrine disrupting chemicals, but the evidence is limited.
Objective
Our aim is to evaluate association between urinary PNP concentration and thyroid function among healthy adults and whether this association has gender differences.
Methods
The study was based on the 2007—2008 US National Health and Nutrition ExaminationSurvey (NHANES). A total of 1071 subjects aging from 20 to 64 years with data on both urinary PNP and serum thyroid function indicators were finally enrolled. Thyroid function was evaluated by measuring serum thyroid stimulating hormone (TSH), free triiodothyronine (FT3), free thyroxine (FT4), total triiodothyronine (TT3), total thyroxine (TT4), thyroglobulin (TG), and thyroglobulin antibody (TG-Ab). A generalized linear model was used to analyze the relationship between urinary PNP and serum thyroid function indicators and the dose-response relationship. Gender differences were also explored.
Results
In the total population, the positive rate of PNP was 92.5%, and the median urinary PNP concentration adjusted for urinary creatinine was 0.62 μg·g?1. The median creatinine-adjusted urinary PNP concentrations in the male and female populations were 0.60 and 0.66 μg·g?1 respectively. The median activities or concentrations of serum thyroid function indicators TSH, FT3, FT4, TT3, and TT4 in the total population were 1500.00 μIU·L?1, 3200.00 pg·L?1, 8.00 ng·L?1, 1140.00 ng·L?1, and 76.00 μg·L?1 respectively. In the total population, a logarithmic unit increase of urinary PNP was associated with 1050.00 pg·L?1 decrease in serum FT3 levels (b=?0.02, 95%CI: ?0.02-?0.01), 10.50 ng·L?1 decrease in FT4 levels (b=?0.02, 95%CI: ?0.03-?0.01), and 10.50 ng·L?1 decrease in TT3 levels (b=?0.02, 95%CI: ?0.03-?0.01), all in a dose-response manner (all Ptrend<0.05). After sex stratification, for every logarithmic unit increase of urinary PNP, the serum TG-Ab level was increased by 1100.00 IU·L?1 (b=0.04, 95%CI: 0.00-0.08) and the serum FT3 level was reduced by 1020.00 pg·L?1 (b=?0.01, 95%CI: ?0.02-0.00) among males, and both showed dose-response relationships (both Ptrend<0.05); every logarithmic unit increase of urinary PNP was associated with 1050.00 pg·L?1 decrease in FT3 levels (b=?0.02, 95%CI: ?0.03-?0.01), 10.50 ng·L?1decrease in FT4 levels (b=?0.02, 95%CI: ?0.03-0.00), 10.70 ng·L?1 decrease in TT3 levels (b=?0.03, 95%CI: ?0.05-?0.01), and 10.50 μg·L?1 decrease in TT4 levels (b=?0.02, 95%CI: ?0.04-0.00) among females, and there were dose-response relationships of urinary PNP concentration with serum FT3 and TT3 levels (both Ptrend<0.001).
Conclusion
Changes in the concentration of PNP in urine are associated with changes in serum FT4, FT3, and TT3 levels and the results also show gender differences.
圖 1 研究對(duì)象篩選流程
Figure 1. Flowchart depicting the inclusion process
表 1 2007—2008年NHANES數(shù)據(jù)庫中20~64歲健康成年人的一般人口學(xué)特征(n=1071)
Table 1 General demographic characteristics of healthy adults aged 20-64 years from the NHANES 2007—2008 (n=1071)
特征n構(gòu)成比/%性別 男性57453.6 女性49746.4種族 墨西哥裔美國人21219.8 其他西班牙裔12511.7 非西班牙裔白人44741.7 非西班牙裔黑人22521.0 其他種族625.8教育水平 初中及以下10810.1 高中46443.3 大專及以上49946.6吸煙狀態(tài) 吸煙者37234.7 非吸煙者69965.3碘狀態(tài) 碘充足74769.7 碘缺乏32430.3飲酒狀態(tài) 是71566.8 否17015.9 缺失18617.3表 2 2007—2008年NHANES數(shù)據(jù)庫中20~64歲健康成年人尿PNP濃度和血清甲狀腺功能指標(biāo)水平[中位數(shù)(P25,P75)]
Table 2 Urinary PNP concentration and serum thyroid function indicator levels of healthy adults aged 20-64 years from the NHANES 2007—2008 [M (P25, P75)]
檢測指標(biāo)總?cè)巳海╪=1071)男性(n=574)女性(n=479)PNP 肌酐校正前尿PNP質(zhì)量濃度/(μg·L?1)0.76 (0.34, 1.50)0.85 (0.42, 1.60)0.66 (0.26, 1.37) 肌酐校正后尿PNP質(zhì)量
分?jǐn)?shù)/(μg·g?1)0.62 (0.34, 1.20)0.60 (0.35, 1.13)0.66 (0.33, 1.28)甲狀腺功能 TSH活性/(μIU·L?1)1500.00 (1020.00, 2220.00)1460.00 (990.00, 2220.00)1520.00 (1050.00, 2220.00) FT3質(zhì)量濃度/(pg·L?1)3200.00 (3000.00, 3500.00)3300.00 (3100.00, 3600.00)3100.00 (2900.00, 3400.00) FT4質(zhì)量濃度/(ng·L?1)8.00 (7.00, 8.00)8.00 (7.00, 8.00)8.00 (7.00, 8.00) TT3質(zhì)量濃度/(ng·L?1)1140.00
(1020.00, 1280.00)1160.00
(1040.00, 1290.00)1120.00
(990.00, 1260.00) TT4質(zhì)量濃度/(μg·L?1)76.00 (66.00, 86.00)74.00 (65.00, 84.00)79.00 (69.00, 89.00) TG質(zhì)量濃度/(μg·L?1)10.46 (6.53, 16.92)10.12 (6.62, 15.87)10.94 (6.31, 18.27) TG-Ab活性/(IU·L?1)600.00 (600.00, 2100.00)600.00 (600.00, 1290.00)600.00 (600.00, 3220.00)
表 3 2007—2008年NHANES數(shù)據(jù)庫中20~64歲健康成年人尿PNP濃度和血清甲狀腺功能指標(biāo)水平的相關(guān)性[b(95%CI)]
Table 3 Correlation of urinary PNP concentration and serum thyroid function indicator levels of healthy adults aged 20-64 years from the NHANES 2007—2008 [b (95%CI)]
PNPlgTSHalgFT3 algFT4algTT3algTT4algTGalgTG-Aba總?cè)巳?(n=1071)連續(xù)變量b0.01(?0.03~0.05)?0.02(?0.02~?0.01)**?0.02(?0.03~?0.01)*?0.02(?0.03~?0.01)*?0.01(?0.02~0.00)0.02(?0.01~0.05)0.02(?0.04~0.07)分類變量 c Q1參照參照參照參照參照參照參照 Q2?0.01(?0.05~0.04)0.00(?0.01~0.00)?0.01(?0.02~0.00)?0.01(?0.02~0.01)?0.01(?0.02~0.00)0.01(?0.02~0.05)?0.02(?0.08~0.04) Q3?0.01(?0.06~0.04)?0.01(?0.02~0.00)?0.01(?0.02~0.00)?0.02(?0.03~?0.01)*?0.01(?0.02~0.01)0.00(?0.04~0.04)0.01(?0.05~0.07) Q42.00(?0.05~0.05)?0.02(?0.03~?0.01)**?0.02(?0.03~0.00)*?0.03(?0.04~?0.01)**?0.01(?0.02~0.01)0.02(?0.01~0.06)0.01(?0.06~0.07) P趨勢(shì)0.811<0.0010.021<0.0010.2420.2870.657男性 (n=575)連續(xù)變量b0.02(?0.03~0.08)?0.01(?0.02~0.00)*?0.01(?0.03~0.00)?0.01(?0.02~0.01)0.00(?0.02~0.01)0.02(?0.05~0.08)0.04(0.00~0.08)*分類變量 c Q1參照參照參照參照參照參照參照 Q2?0.22(?0.09~0.04)?0.01(?0.02~0.00)?0.01(?0.02~0.01)0.00(?0.02~0.02)0.00(?0.02~0.02)0.02(?0.06~0.10)?0.01(?0.05~0.04) Q3?0.04(?0.10~0.02)?0.01(?0.02~0.01)?0.01(?0.03~0.00)?0.02(?0.03~0.00)?0.01(?0.02~0.01)0.05(?0.03~0.12)?0.02(?0.07~0.02) Q40.02(?0.04~0.09)?0.02(?0.03~?0.01)*?0.01(?0.03~0.00)?0.01(?0.03~0.01)0.00(?0.02~0.02)0.01(?0.07~0.08)0.06(0.02~0.10)* P趨勢(shì)0.2590.0030.1440.1660.9330.9260.002女性 (n=497)連續(xù)變量b0.00(?0.06~0.05)?0.02(?0.03~?0.01)*?0.02(?0.03~0.00)*?0.03(?0.05~?0.01)*?0.02(?0.04~0.00)*0.01(?0.07~0.09)0.00(?0.05~0.05)分類變量c Q1參照參照參照參照參照參照參照 Q20.01(?0.06~0.08)?0.01(?0.02~0.01)?0.01(?0.03~0.01)?0.02(?0.04~0.01)?0.01(?0.03~0.01)?0.04(?0.14~0.05)0.02(?0.04~0.09) Q30.04(?0.03~0.11)?0.01(?0.03~0.00)?0.01(?0.03~0.01)?0.02(?0.04~0.00)*?0.01(?0.03~0.01)0.03(?0.07~0.13)?0.03(?0.09~0.04) Q4?0.02(?0.09~0.06)?0.02(?0.04~?0.01)*?0.02(?0.04~0.00)?0.04(?0.06~?0.02)*?0.02(?0.04~0.00)0.01(?0.09~0.12)?0.01(?0.08~0.05) P趨勢(shì)0.562<0.0010.128<0.0010.1080.5870.431[注]*:P<0.05;**:P<0.001。a:協(xié)變量為種族、性別、吸煙狀態(tài)、碘狀態(tài)。b:肌酐校正后的PNP質(zhì)量分?jǐn)?shù)經(jīng)lg10轉(zhuǎn)換。c:肌酐校正后的PNP質(zhì)量分?jǐn)?shù)分為Q1(<0.34 μg·g?1)、Q2(0.34~<0.62 μg·g?1)、Q3(0.62~<1.20 μg·g?1)、Q4(≥1.20 μg·g?1)組。其中男性分為Q1(<0.35μg·g?1)、 Q2(0.35~<0.59 μg·g?1)、Q3(0.59~<1.13 μg·g?1)、Q4(≥1.13 μg·g?1)組;女性分為Q1(<0.33 μg·g?1)、Q2(0.33~<0.66 μg·g?1)、Q3(0.66~<1.29 μg·g?1)、Q4(≥1.29 μg·g?1)組。 [1]Parathion[J]. IARC Monogr Eval Carcinog Risk Chem Hum, 1983, 30: 153-181.
[2]CCANCCAPA A, MASIá A, ANDREU V, et al. Spatio-temporal patterns of pesticide residues in the Turia and Júcar Rivers (Spain)[J]. Sci Total Environ, 2016, 540: 200-210. doi: 10.1016/j.scitotenv.2015.06.063
[3]GARCIA S J, ABU-QARE A W, MEEKER-O'CONNELL W A, et al. Methyl parathion: a review of health effects[J]. J Toxicol Environ Health B Crit Rev, 2003, 6(2): 185-210. doi: 10.1080/10937400306471
[4]Methyl parathion[J]. IARC Monogr Eval Carcinog Risk Chem Hum, 1983, 30: 131-152.
[5]EDWARDS F L, YEDJOU C G, TCHOUNWOU P B. Involvement of oxidative stress in methyl parathion and parathion-induced toxicity and genotoxicity to human liver carcinoma (HepG?) cells[J]. Environ Toxicol, 2013, 28(6): 342-348. doi: 10.1002/tox.20725
[6]COCCO P. On the rumors about the silent spring. Review of the scientific evidence linking occupational and environmental pesticide exposure to endocrine disruption health effects[J]. Cad Saude Publica, 2002, 18(2): 379-402. doi: 10.1590/S0102-311X2002000200003
[7]SHRESTHA S, PARKS C G, GOLDNER W S, et al. Incident thyroid disease in female spouses of private pesticide applicators[J]. Environ Int, 2018, 118: 282-292. doi: 10.1016/j.envint.2018.05.041
[8]SHRESTHA S, PARKS C G, GOLDNER W S, et al. Pesticide use and incident hypothyroidism in pesticide applicators in the agricultural health study[J]. Environ Health Perspect, 2018, 126(9): 097008. doi: 10.1289/EHP3194
[9]GOLDNER W S, SANDLER D P, YU F, et al. Hypothyroidism and pesticide use among male private pesticide applicators in the Agricultural Health Study[J]. J Occup Environ Med, 2013, 55(10): 1171-1178. doi: 10.1097/JOM.0b013e31829b290b
[10]SANTOS R, PICCOLI C, CREMONESE C, et al. Thyroid and reproductive hormones in relation to pesticide use in an agricultural population in Southern Brazil[J]. Environ Res, 2019, 173: 221-231. doi: 10.1016/j.envres.2019.03.050
[11]FORTENBERRY G Z, HU H, TURYK M, et al. Association between urinary 3, 5, 6-trichloro-2-pyridinol, a metabolite of chlorpyrifos and chlorpyrifos-methyl, and serum T4 and TSH in NHANES 1999-2002[J]. Sci Total Environ, 2012, 424: 351-355. doi: 10.1016/j.scitotenv.2012.02.039
[12]Centers for Disease Control and Prevention. Third national report on human exposure to environmental chemicals[R]. Atlanta, GA: NCEH Publication, 2005.
[13]JAIN R B. Variability in the levels of 3-phenoxybenzoic acid by age, gender, and race/ethnicity for the period of 2001-2002 versus 2009-2010 and its association with thyroid function among general US population[J]. Environ Sci Pollut Res Int, 2016, 23(7): 6934-6939. doi: 10.1007/s11356-015-5954-9
[14]LI L, ZHAI Z, LIU J, et al. Estimating industrial and domestic environmental releases of perfluorooctanoic acid and its salts in China from 2004 to 2012[J]. Chemosphere, 2015, 129: 100-109. doi: 10.1016/j.chemosphere.2014.11.049
[15]Centers for Disease Control and Prevention. National health and nutrition examination survey, 2007-2008 data documentation, codebook, and frequencies demographic variables & sample weights[EB/OL]. (2009-09). https://wwwn.cdc.gov/Nchs/Nhanes/2007-2008/DEMO_E.htm.
[16]Centers for Disease Control and Prevention. NHANES 2007-2008 laboratory data [EB/OL]. [2021-02-15]. https://wwwn.cdc.gov/Nchs/Nhanes/Search/DataPage.aspx?Component=Laboratory&CycleBeginYear=2007.
[17]OLSSON A O, BAKER S E, NGUYEN J V, et al. A liquid chromatography-tandem mass spectrometry multiresidue method for quantification of specific metabolites of organophosphorus pesticides, synthetic pyrethroids, selected herbicides, and deet in human urine[J]. Anal Chem, 2004, 76(9): 2453-2461. doi: 10.1021/ac0355404
[18]TAMANG M K, GELAL B, TAMANG B, et al. Excess urinary iodine concentration and thyroid dysfunction among school age children of eastern Nepal: a matter of concern[J]. BMC Res Notes, 2019, 12(1): 294. doi: 10.1186/s13104-019-4332-y
[19]World Health Organization. Indicators for assessing iodine deficiency disorders and their control through salt iodization[M]. Geneva: WHO (World Health Organization), 1994.
[20]JAIN R B. Association between thyroid function and urinary levels of 3, 5, 6-trichloro-2-pyridinol: data from NHANES 2007-2008[J]. Environ Sci Pollut Res, 2017, 24(3): 2820-2826. doi: 10.1007/s11356-016-8007-0
[21]HU Y, ZHANG Z, QIN K, et al. Environmental pyrethroid exposure and thyroid hormones of pregnant women in Shandong, China[J]. Chemosphere, 2019, 234: 815-821. doi: 10.1016/j.chemosphere.2019.06.098
[22]LI A J, KANNAN K. Urinary concentrations and profiles of organophosphate and pyrethroid pesticide metabolites and phenoxyacid herbicides in populations in eight countries[J]. Environ Int, 2018, 121(Pt 2): 1148-1154.
[23]CHANG C, CHEN M, GAO J, et al. Current pesticide profiles in blood serum of adults in Jiangsu Province of China and a comparison with other countries[J]. Environ Int, 2017, 102: 213-222. doi: 10.1016/j.envint.2017.03.004
[24]BARR D B, TURNER W E, DIPIETRO E, et al. Measurement of p-nitrophenol in the urine of residents whose homes were contaminated with methyl parathion[J]. Environ Health Perspect, 2002, 110 Suppl 6 (Suppl 6): 1085-1091.
[25]CHIU Y H, WILLIAMS P L, MíNGUEZ-ALARCóN L, et al. Comparison of questionnaire-based estimation of pesticide residue intake from fruits and vegetables with urinary concentrations of pesticide biomarkers[J]. J Expo Sci Environ Epidemiol, 2018, 28(1): 31-39. doi: 10.1038/jes.2017.22
[26]PANUWET P, PRAPAMONTOL T, CHANTARA S, et al. Concentrations of urinary pesticide metabolites in small-scale farmers in Chiang Mai province, Thailand[J]. Sci Total Environ, 2008, 407(1): 655-668. doi: 10.1016/j.scitotenv.2008.08.044
[27]WYLIE B J, AE-NGIBISE K A, BOAMAH E A, et al. Urinary concentrations of insecticide and herbicide metabolites among pregnant women in rural Ghana: a pilot study[J]. Int J Environ Res Public Health, 2017, 14(4): 354. doi: 10.3390/ijerph14040354
[28]JARA E L, MU?OZ-DURANGO N, LLANOS C, et al. Modulating the function of the immune system by thyroid hormones and thyrotropin[J]. Immunol Lett, 2017, 184: 76-83. doi: 10.1016/j.imlet.2017.02.010
[29]PREZIOSO G, GIANNINI C, CHIARELLI F. Effect of thyroid hormones on neurons and neurodevelopment[J]. Horm Res Paediatr, 2018, 90(2): 73-81. doi: 10.1159/000492129
[30]FITZGERALD S P, BEAN N G, FALHAMMAR H, et al. Clinical parameters are more likely to be associated with thyroid hormone levels than with thyrotropin levels: a systematic review and meta-analysis[J]. Thyroid, 2020, 30(12): 1695-1709. doi: 10.1089/thy.2019.0535
[31]WU Y, SHI X, TANG X, et al. The correlation between metabolic disorders and Tpoab/Tgab: a cross-sectional population-based study[J]. Endocr Pract, 2020, 26(8): 869-882. doi: 10.4158/EP-2020-0008
[32] 劉蘋, 文衛(wèi)華, 宋肖肖, 等. 氯氰菊酯和甲基對(duì)硫磷混配對(duì)大鼠內(nèi)分泌和免疫系統(tǒng)的影響——Ⅰ. 劑量-效應(yīng)關(guān)系[J]. 衛(wèi)生研究, 2006, 35(3): 257-260. doi: 10.3969/j.issn.1000-8020.2006.03.001LIU P, WEN W, SONG X, et al. Effects of mixed cypermethrin and methylparathion on endocrine hormone levels and immune functions in rats: I. Dose-response relationship[J]. J Hyg Res, 2006, 35(3): 257-260. doi: 10.3969/j.issn.1000-8020.2006.03.001
[33]BOGAZZI F, RAGGI F, ULTIMIERI F, et al. Effects of a mixture of polychlorinated biphenyls (Aroclor 1254) on the transcriptional activity of thyroid hormone receptor[J]. J Endocrinol Invest, 2003, 26(10): 972-978. doi: 10.1007/BF03348194
[34]QATANANI M, ZHANG J, MOORE D D. Role of the constitutive androstane receptor in xenobiotic-induced thyroid hormone metabolism[J]. Endocrinology, 2005, 146(3): 995-1002. doi: 10.1210/en.2004-1350
[35]MEEKER J D, BARR D B, RYAN L, et al. Temporal variability of urinary levels of nonpersistent insecticides in adult men[J]. J Expo Sci Environ Epidemiol, 2005, 15(3): 271-281. doi: 10.1038/sj.jea.7500402
相關(guān)知識(shí)
盤點(diǎn):甲狀腺激素水平對(duì)人體健康的影響
體脂分布與腎結(jié)石之間的關(guān)聯(lián):來自美國人群的證據(jù)
Nat Med:基于73萬人遺傳和健康數(shù)據(jù)揭示遺傳風(fēng)險(xiǎn)因素對(duì)壽命的影響
重金屬宮內(nèi)暴露對(duì)胎兒DNMT3B基因甲基化的影響
中國健康醫(yī)療大數(shù)據(jù)研究綜述——基于期刊論文的分析
環(huán)境污染對(duì)健康的影響
水體污染對(duì)人類健康的影響?
環(huán)境污染對(duì)腸道菌群和免疫系統(tǒng)的影響
孕婦不小心吃了含特丁基對(duì)苯二酚的食物 特丁基對(duì)苯二酚對(duì)人身體有傷害嗎
【綜述】妊娠期碘營養(yǎng)狀況對(duì)母兒健康的影響
網(wǎng)址: 健康成年人群尿中對(duì)硝基酚水平對(duì)甲狀腺功能的影響——基于美國NHANES數(shù)據(jù)庫 http://www.u1s5d6.cn/newsview308628.html
推薦資訊
- 1發(fā)朋友圈對(duì)老公徹底失望的心情 12775
- 2BMI體重指數(shù)計(jì)算公式是什么 11235
- 3補(bǔ)腎吃什么 補(bǔ)腎最佳食物推薦 11199
- 4性生活姿勢(shì)有哪些 盤點(diǎn)夫妻性 10428
- 5BMI正常值范圍一般是多少? 10137
- 6在線基礎(chǔ)代謝率(BMR)計(jì)算 9652
- 7一邊做飯一邊躁狂怎么辦 9138
- 8從出汗看健康 出汗透露你的健 9063
- 9早上怎么喝水最健康? 8613
- 10五大原因危害女性健康 如何保 7828
- 今日水素:陽臺(tái)菜園,居家種出健康芽菜指南
- 運(yùn)動(dòng)女孩的休閑穿搭
- 《居家健康監(jiān)測證明》可在“隨申辦”在線開
- 【便民提示】在線開具“居家健康監(jiān)測證明”
- 健身休閑館如何經(jīng)營管理
- 這個(gè)集運(yùn)動(dòng)、休閑、時(shí)尚為一體的運(yùn)動(dòng)品牌進(jìn)
- 知名運(yùn)動(dòng)休閑服裝品牌
- 江北新區(qū)兩案例入選省級(jí)居家社區(qū)養(yǎng)老服務(wù)典
- 康健園·戰(zhàn)“疫”|慢性病患者如何做好居家
- 北京啟明康健休閑健身中心 (北京市豐臺(tái)區(qū)